

Second Interim Report

NASA

RESEARCH IN THE EFFECTIVE IMPLEMENTATION
OF

GUIDANCE COMPUTERS WITH LARGE SCALE ARRAYS

BY J. J. Pariser
F. D. Erwin
J. F. McKevitt
J. A. Burke
C. P. Disparte

July 1969
(Revised September 1969)

FR 69-11-1000

Prepared under Contract No. NAS 12-665 by
Hughes Aircraft Company

Fullerton, California

Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FOREWORD

This Second Interim Report summarizes the overall study results and updates the
First Interim Report submitted October, 1968 and revised May, 1969. The study
has resulted in building blocks for effective implementation of guidance computers
with large scale arrays. The study is being conducted by Hughes-Fullerton under
Contract No. NAS 12-665 for the Electronics Research Center of the National Aero-
nautics and Space Administration.

ii

CONTENTS

SUMMARY AND INTRODUCTION Section 1

DESIGN AND USE OF THE FUNCTIONAL CHARACTER SET Section 2

MCB COMPUTER PRELIMINARY IMPLEMENTATION Section 3

CHARACTER SUB-PARTITIONING Section 4

CELLULAR ARRAY MECHANIZATION Section 5

REFERENCES .. Section6

APPENDIX

BLANK PAGE FOLLOWS iii/iv

ILLUSTRATIONS

Figure

1-1

2-1

2-2

2-3

2-4

t

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

Typical Functional Character Configuration. The 10 character
types defined for the MCB are grouped into common units, as
shown here, in this computer design method 1-1

G1 Character Block Diagram. Operands of the microprogram are
stored here ... 2-3
L1 Character Block Diagram. The shifts and rotates provided
execute from 1 to 31 positions in a single step, for fast and
efficient manipulation of bits within the operands 2-5
L2 Character Block Diagram. The L2 character performs all
arithmetic in 2's complement form and addition with carry look-

L3 Character Block Diagram. The microprogram 1/0 capability
consists of four 1/0 channels, interrupt signal storage and inter-
rupt mask storage, parity generation and check, and destination
and selection logic 2-7
MM Character Block Diagram. Several of these arrays can be
combined to form a larger micromemory array, to a maximum
of 1024 words .. 2-8
M1 Character Block Diagram. Ten address bits are available to
address up to 1024 micromemory words 2-9
M2 Character Block Diagram. The register holds a full micro-
memoryword .. 2-9
P1 Character Block Diagram. The 256 bits of storage are
provided by 16 registers of 16 bits each 2-11
P2 Character Block Diagram. Introducing a time signal to
this 8-bit up/down counter produces a real-time binary clock 2-11
P3 Character Block Diagram. This switch allows three simplex
simultaneous connections 2-11

Micromemory Organization. There is one M2 character per in-
struction group and one M1 character per phase group 2-13
Micromemory Word. This word provides the control necessary
for the functions of the characters 2-15
Instruction Subfields. The three subfields specify location of
operand, operation to be performed, and destination of result 2-15
Four Stages of Expandability. A comparison of Parts A and E
illustrates the versatility of the character set as it is adapted
to both simple and complex situations 2-21
Typical Functional Character Configuration. Functional
character configuration is a major input in the design auto-

ahead byte parallel 2-7

mation process 2-25

V

ILLUSTRATIONS (Continued)

Figure

3-1

3 -2

3 -3

3 -4

3 -5

3 -6

3 -7

3-8

3-9

3-10

3-11

3-12

3-13

3 -14

3-15

NASA Modular Computer Showing Columns and Modules. Identical
modules in rows provide redundancy while working computers can
be configured in many ways from the distinct columnar module types , . .
Modular Computer Organization. The breadboard is a two-column
configuration which is sufficient to demonstrate computation, modu-
larity, and automatic reconfiguration
Functional Character Implementation of MCB. This implementation
verifies the ability of the character set to be applied successfully to
specific design problems.
MCB Control Unit Block Diagram. Versatility is provided by the

Control Unit Microprogram Flow Chart - General. After the
instruction is received and decoded, the CU proceeds along one
of 32 parallel paths according to the functional category of the
instruction ..
Control Unit Microprogram Flow Chart - Detailed Example. This
"direct add" microprogram is one of the internally processed CU
functions ...
MCB Arithmetic Unit Block Diagram. With its 23-bit single-
logic unit, the machine is better than the CU for more complicated
functions ...
Arithmetic Unit Microprogram Flow Chart. The Arithmetic Unit
is responsible for seven arithmetic functions
MCB Memory Unit Block Diagram. A minimum of characters are
required ...
Memory Unit Flow Chart. The normal mode is to wait for external
interrupts ..
MCB 1/0 Block Diagram. The characters provide a 32-bit data
interface with external devices.
1/0 Microprogram Flow Chart - General. This microprogram is

1/0 Block Transfer Microprogram Flow Chart - Detailed Example.
This flow corresponds to the area enclosed in heavy lines in the
facing figure ..
MCB Configuration Assignment Unit Block Diagram. The CAU
takes over reconfiguration duties if the idle-time counter and
diagnostic-time counter go to zero..
Configuration Assignment Unit Microprogram Flow Chart. This
is a relatively simple microprogram mainly concerned with
checking for e r rors

16-bit double-logic unit.

the most intricately sequenced of any unit.

Page

3-1

3-3

3 -5

3-11

3-12

3-13

3-15

3-15

3-17

3-17

3-19

3-20

3-21

3 -23

3-25

vi

ILLUSTRATIONS (Continued)

Figure

3-16 CUAU Block Diagram. The combined unit is a 32-bit, double-
logic-unit machine which is fast for complicated arithmetic
functions ...
A Single Rail Cellular Cascade. The set of functions Q is
smaller than the set of n-variable Boolean functions

5-1

Page

5-2 Functions for Cutpoint Cells. Cutpoint cells may either be
set to one of 8 Boolean functions of 2 variables o r may

Example of a Cutpoint Array. This single rail cellular array

Example of a Three Variable Function which forms the Sum of
Products. One column is required for each product and one

function as an R-S flip chip

allows for the mechanization of multiple functions

..............................
5-3

5-4

.

row to collect the products
5-5 The Cell for Cobweb Cellular Arrays. Four major problems

of the cutpoint array are overcome by the increased connectability
of the cobweb cell

5-6 Cutpoint Array Realization
plement the same function

NAND gate mechanization requires only four delays

Equations of P2 Character. Seven cell delays are required
of P2 Character. Four gate delays are required

5-7 Cobweb Array Realization. Fewer cells a re required to im-

5-8 Cutpoint Mechanization for the Last Carry Output (y) Logic.
This mechanization requires seven gate delays, whereas a

Cobweb Cell Array Mechanization for 4 Up-Down Counter

Mas te r Slice Mechanization for 4 Up-Down Counter Equations

.
5-9

5-10

3-27

5 -3

5-5

5-5

5-5

5-6
5-7

5-7

5-10

5-11

5-11

BLANK PAGE FOLLOWS vii/viii

SECTION 1
SUMMARY AND INTRODUCTION

Summary of Research Performed to Implement Guidance Computers

Accomplishments During Periods of First and Second Interim
with Large Scale Arrays
Reports 1-2

1-0

...
Need for Utilization of Large Scale Integration (LSI) 1-4

Section 1 - Summary and Introduction

SUMMARY OF RESEARCH PERFORMED TO IMPLEMENT GUIDANCE COMPUTERS
WITH LARGE SCALE ARRAYS

The NASA Modular Computer Breadboard (MCB) has been designed by selection and
microprogramming of functional logic characters which have been partitioned to mini-
mize large scale integration (LSI) chip types. Alternative implementations, both of the
characters and of the MCB, have been made with favorable results.

This study applies functional logic characters to the selected system design of the NASA
Modular Computer (NMC) as represented by a modular computer breadboard (MCB).
The characters are specified as the building blocks and a repertoire of microprogram
instructions is defined. The character set totals ten unique building blocks, which are
interconnected as shown in the figure to form digital equipments. A micromemory word
of 50 bits is specified. It may be utilized either singly or in pairs, each containing two
instructions and a constant field. Based on available informationof the MCB Computer,
a design of each of the five units was completed using the functional characters. The
design of each unit in general includes selecting proper characters and microprogram-
ming the operation of each character to provide all specified MCB machine instructions
and operations. Implementation of the MCB using functional characters is evaluated
resulting in favorable operating time, reduced pins, reduced total cards, and reduced
card types.

Since the characters represent a logical complement, they can be implemented with
almost any type of circuitry that meets the speed-power considerations. The study is
proceeding utilizing T2L circuits as stipulated by NASA. However, Hughes strongly
recommends that MOS circuits receive parallel consideration as the implementation
vehicle. The decision does not need to be made until the commencement of a prototype
design of a computer. Ion implantation or a similar speed-up is required if MOS is to
be used to meet the speed and power objectives. Hughes considers the reliability and
availability risks reasonable and manageable.

Hughes also strongly recommends that the restriction of about 100 gates per chip be
removed and that the gate per chip size be made as large as possible commensurate
with anticipated production capabilities of the 1970's. In our opinion, the larger gate
per chip implementation will result in improved reliability.

A significant portion of this report is devoted to demonstrating the application of a
minimal set of general-purpose functional characters (logic arrays) to the implementa-
tion of an existing logic design of a general-purpose computer (the MCB). The reader
is therefore introduced first to the set of logical building blocks. He is then presented
with a repertoire of micro-instructions and microprogram-word structure suitable for
controlling the desired logic functions of the specified machine instructions. Following
the presentation of this basic background material, the detailed preliminary implemen-
tation of the MCB Computer is given. In general, each unit of the MCB is implemented
with the functional characters as shown in a block diagram form. A flow diagram
presents the microprogram operations for general unit operation and, in some cases,
for specific detailed examples. Some general observations and conclusions related to
the functional character implementation are presented. View graphs shown at NASA
ERC as part of the first presentations are reproduced in the appendix accompanied by a
few appropriate comments.

1-0

92816-

I
I I

CONTROL UNIT
1

AUXILIARY UNIT

Figure 1-1. Typical Functional Character Configuration. The 10 character types
defined for the MCB are grouped into common units, as shown here, in this computer
design method.

1- 1

Section 1 - Summary and Introduction

ACCOMPLISHMENTS DURING PERIODS OF FIRST AND SECOND INTERIM REPORTS

Revision of the MCB design; refinement of the functional character set, and micropro-
gram repertoire; comparison of cellular arrays with functional characters; and sub-
partitioning of the characters are the major extensions to the first interim report.

The First Interim Report (submitted October, 1968 and revised May, 1969), presented
initial results of the study program. The areas discussed in that report are summarized
in the facing table. This Second Interim Report does not attempt to include all of the
material of the first except as it relates to work accomplished since its publication.
Thus no discussion is given here of implementation of special purpose processors, sur-
vey of spaceborne computer characteristics, weighted design considerations for aero-
space computers, and review of LSI technology for aerospace computers.

The relationship between First to the Second reports is clarified by the following
summary statement which was made in the first report.

"The reader is advised to view this report and effort with its purpose in mind. Namely to
demonstrate the feasibility (not practicability) of implementing various digital systems
using predesigned functionally-organized logical groupings - functional character set.
The fact that the MCB implementation resulted in comparable speeds with the custom-
designed logic is indeed an unexpected benefit, since no optimization of the architecture
for use of functional characters has been attempted. The purpose of the implementation
was simply to demonstrate conclusively that purely on a logical basis equipments can be
designed with pre-interconnected logic. Our intent was to completely ignore the circuit
aspects (speed, fan-in, fan-out, etc.). Now that the feasibility of designing digital
equipments using macro-logical elements (functional characters) has been established,
we will proceed according to our work plan with the refinements of the character set and
procedures in order to obtain the most efficient design in terms of production risk,
reliability, performance, etc. ''
Since then, more detailed considerations of the design characteristics (both logical
and circuits) of the characters have been made. In this report, Section 2 contains
basic material first presented in the First Interim Report. Considerable study effort
has been spent subsequent to that report in refinements and verification in those areas.
However, changes in the character set and microprogram repertoire were few. L3 is
the only character having major change; the L3 capabilities were greatly extended,
Minor changes were made to the repertoire, and several changes o r refinements were
made in the character implementation of the NASA MCB computer. A general repro-
gramming of all microprograms was necessary to increase execution speed and to more
efficiently use ROM.

To incorporate the new L3 character, unit interfaces were redesigned, resulting in
faster inter-unit communication. The work sharing between the Control Unit and
Arithmetic Unit was changed to decrease execution time for some instructions. In addi-
tion, the effects of combining the functions of the Control and Arithmetic Units into a
single unit were studied.

The MC B implementation was improved, both in performance and character utilization,
over the preliminary results.

Alternative schemes for sub-partitioning all characters have been analyzed. The sub-
partitions contain about 100 gates per chip as opposed to 200 to 400 gates per character
with a typical 50-percent degradation in the gate-to-pin ratio. The relative efficiency

1-2

of cutpoint and cobweb cellular logic implementation of the character set as opposed to
more conventional LSI techniques was studied and no significant advantages in using
cellular arrays rather than master slice arrays were found.

Areas Reported in First Interim Report

0 Description of Building Blocks
0 Description of Microprogram Repertoire
e Preliminary Implementation of the MCB Computer
0 Implementation of Special Purpose Computers with the Functional Characters
0 Survey of Spaceborne Computer Characteristics
e Weighted Design Considerations for Aerospace Computers
0 Review of LSI Technology for Aerospace Computers

Areas Reported in Second Interim Report

0 Description of Refined Building Blocks
0 Description of Refined Microprogram Repertoire
0 Revised Implementation of the MCB Computer
0 Explored Combining CU and AU Units of the MCB
0 Evaluation and Significance of the Character Set in the MCB Implementation
0 Subpartitioning of the Character Set
0 Evaluation of Cellular Arrays as Candidates for LSI
0 Consideration of Circuit Characteristics

1-3

Section 1 - Summary and Introduction

NEED FOR UTILIZATION OF LARGE SCALE INTEGRATION (LSI)

A primary goal of this program is to prove that a judicious partitioning of digital systems,
divorced from bias toward any particular system, can result in a set of LSI devices that
can entirely implement many different schemes for use of LSI computers and other
digital devices.

Since the advent of LSI technology, several schemes have evolved for the utilization of
large arrays to their full potential. A common and straightforward approach involves
the designer restricting himself to the equipment being designed at the moment. Faced
with only a limited set of problems, it is not difficult to specify a small number of LSI
array types which will efficiently complete the design. While the results are quite
encouraging for specific cases, the drawbacks of any mass adoption of these techniques
are obvious, This, the so-called ffcustom approach, If would require the semiconductor
manufacturer to be responsive to each customer with numerous low-output production
runs of highly specialized devices. The per-unit cost to the user, for his own efforts as
well as those of the manufacturer, would be quite high due to the inability to spread
initial costs over many devices. In addition, the complexity of 100-gate-plus arrays is
such that it is difficult to substitute one for another (with efficient results). This would
severely limit the off-the-shelf capabilities of both user and manufacturer.

An obvious solution to these problems is the introduction of a small set of standard LSI
chips. Semiconductor suppliers , making tentative advances into LSI product marketing,
have already proposed such devices as adders, counters, and shift registers. However,
this does not represent the solution to the general problem. A design heavily committed
to the use of these devices must fall back on NISI or standard IC for the large remainder
of the circuitry. The reason is that adders, counters, registers and other orderly,
well-defined areas represent the regions of the system with the highest gate-to-pin
ratios. After these portions are lifted out of the system, the remainder is character-
ized by very low gate-to-pin ratios (notably control and data routing functions). Unable
to satisfy the LSI design criteria of high gate-to-pin ratios any longer, the designer must
look to more standard components. Unfortunately, any proposed solution to the LSI
partitioning problem which lacks a total system approach tends to drift towards this
pitfall.

Bit Slicing Versus Functional Partitioning - Researchers striving towards partitioning
for total or near-total LSI implementation tend to diverge along one of two conceptual
paths; bit-slicing and functional partitioning. To illustrate the difference, consider the
data portion of the computer. In functional partitioning one may specify an adder as one
LSI array, registers as another, a shift register as a third, and so forth. On the other
hand, in bit-slicing one would design an LSI array consisting of a combined one- o r
two-bit adder, registers, shift registers, etc. , then build up his system from this chip
type according to the desired word length.

The bit-slice approach has resulted in some notable advantages, particularly the ability
to achieve very high gate-to-pin ratios and implement systems using a small number of
different array types. However, bit-sliced modules have the basic flaw of being system-
dependent. This means that behind such bit-slicing approaches there lie systems, real
or implied, for which the resulting arrays are most efficient. An attempt to apply the
arrays to a significantly different system results in a poor design. Considering the
types of bit-slice devices being proposed, inefficiencies would most often be manifest in
the design of a simple device in which the majority of the gates of the array intended to
accomplish complex functions are wasted. Although this may be acceptable in some

1-4

situations, it is unlikely that it would satisfy the strict requirements of size, weight,
power, and reliability imposed by aerospace and military systems.

Standardization of LSI Through Functional Characters - The resulting group of arrays,
referred to as a "character set" and each one individually as a different %haracterff, is
sufficiently small in number (lo), with each type having acceptable size and gate/pin-
ratio, to be considered acceptable and desirable in view of its wide range of applications.
These building blocks are referred to as characters because of the metaphor that may be
made between the building blocks and characters of the alphabet (letters). Letters form
words to express the language whereas building blocks form units to build the machine.
In both cases a closed set (of characters) is used to produce the desired end,

Although the character set is neither rigidly functionally-partitioned nor bit-sliced, it is
biased towards functional partitioning to give it the versatility to efficiently implement
both complex and simple digital devices. As an approach, functional partitioning has a
detailed and successful background. Bit-slicing considerations give the character set
its ability to implement systems of varying word lengths.

In addition to providing the user with a standard set of chips to implement many different
digital machines, the completeness of the approach (the ability of the characters to
implement the whole machine) relieves the user of the burden of logic design. These
tasks are reduced to the selection of character types and word lengths.

BLANK PAGE FOLLOWS 1-5/1-6

SECTION 2
DESIGN AND USE OF THE FUNCTIONAL CHARACTER SET

Subsection 1 . Computer Building Blocks
Computer Design by Configuring Building Blocks
Description of the 6 1 Character
Description of the L1 Character
Description of the L2 and L3 Characters
Description of the Micromemory Characters
Description of the P1. P2. and P3 Characters

Necessity for the Use of Micromemory Control
Function and Composition of the Micromemory Word
The Three Subfields Constituting the Instruction Field
The Constant Field Used as a Transfer Field

Design Complexity Alternatives with Functional Characters
Reliability and Maintainability Using Functional Characters
Aids for Design Automation Capability with the Character Set

..................

.......................
Subsection 2 . Microprogram Repertoire

..................
....................

Subsection 3 . Application Characteristics of the Computer Building Blocks
..........

2-0
2-2
2-4
2-6
2-8

2-10

2-12
2-14
2-16
2-18

2-20
2-22
2-24

Section 2 - Design and U s e of the Functional Character Set
Subsection 1 - Computer Building Blocks

COMPUTER DESIGN BY CONFIGURING BUILDING BLOCKS

The motivation for the functional character set is the recognition that digital equipments
of all types consist of relatively few functions. The translation of these functions into

Logical Design of digital equipments is based primarily on Boolean logic with some
sprinkling of switching theory. However, by and large, the design is an individual
matter, lacking standardization, with each designer retracing the steps of his col-
league. The methods utilized in programming such as use of macros, higher order
languages, etc., are relatively unknown in logical design. This study endeavors to
introduce standardization to the task of logic design in a form characteristic of a
higher order language.

Standardization is possible because digital devices are constructed of a few basic types
of functions - memory, registers, gating, and control. To achieve this standardiza-
tion, a set of functional characters has been designed and successfully tested for suf-
ficiency of implementing various digital equipments. "Implementation" referred herein
and throughout the report implies in the logical sense and not in the circuit sense. A
character in this report refers to a logical entity which can be subpartitioned to suit
the physical implementation requirements. The work associated with transforming
the logical specifications to a physical realization involves many tradeoffs and inter-
actions of various disciplines, and this effort is beyond the scope of the study.

The functional character set is a group of logic arrays forming a self-sufficient family
of blocks which reduce computer design to a determination of character types and num-
ber. For the design of the MCB, 10 character* types are required as listed below.
They are described in greater detail in the following topics.

G1
L l
L2
L3
M I
M2
MM
P1
P2
P3

Micromemory register storage
General logic
Arithmetic logic

Micromemory counter
Micro- instruction Register
Micro-array
Scratch pad memory
Up/Down counter.
Switch

Input/Output

The table summarizes the number of gates and pins required for each character. The
high gate to pin ratios achieved are an important indicator of success in LSI
implementation.

~~

*The words "character" and ('card" are used interchangeably. (It is not to be inferred
that the logic content of a functional character wil l necessarily represent the contents
of a circuit card.)

2-0

TABLE 2-1. COMPOSITION OF THE TEN CHARACTER TYPES SUFFICIENT FOR
BUILDING SPECIAL-PURPOSE AND GENERAL-PURPOSE DIGITAL EQUIPMENTS

274 145

2 50 77

377 149

348 91

323 131

Character

G1

1.8

3.3

2.5

3.8

2.5

P1

L1

L2

L3

M1

M2

MM

P2

P3

Function

General Register

Scratch Pad

Boolean

Arithmetic

I/O

Sequencer

Ins true tion

Array

Up/Down Counter

Switch

2- 1

Section 2 - Design and Use of the Functional Character Set
Subsection 1 - Computer Building Blocks

DESCRIPTION OF THE G1 CHARACTER

Each G1 character provides efficient centralized storage for general utilization in
varying applications.

The G1 character provides the bulk of storage for operands of the microprogram.
Each character contains 4 registers of 8 bits each accompanied by reading and writing
selector gates. The storage element is provided with simultaneous dual reading and
writing capability. The storage fl ip flop itself is designed for minimum read after
wr i t e delay.

Each of the two input busses is common to all registers and carries to the G1 char-
acter 8 lines per bus, one line from each bus for each bit of the register (see facing
figure). Input data selection is accomplished at the memory element by a coincidence
of positive information on a particular input bus and register selection for that bus by
destination decoding logic within the character. The destination decoding logic is
duplicated to provide for writing from the two input busses into the same character
under control of two different microcommands. As will be illustrated later, this is a
key factor for the machine expandability property of the character set as it allows G1
to form a data path link between individual logic units under control of up to 2 differ-
ent micromemories. Different registers in the character may be written into
simultaneously.

Reading of the register is provided by dual source decoding logic which gates data to
independent dual output busses. This duality provides for information from any two
registers to be simultaneously placed on two output busses. Several G1 characters
placed in parallel provide registers of more than 8 bits in length.

2-2

92816-

I
I
I
I
I

’[I
3ESTI NATll
DECODE
I

DUAL
OUTPUT
SELECTION

I OUTPUT

I

1
1
I
I
I

OUTPUT

1
I
I
I ----

ENCODED ENCODED ENCODED ENCODED
SIGNALS SIGNALS SIGNALS SIGNALS

Figure 2-1. G 1 Character Block Diagram. Operands of the microprogram are stored
here.

2-3

Section 2 - Design and U s e of the Functional Character Set
Subsection 1 - Computer Building Blocks

DESCRIPTION OF THE L1 CHARACTER

The L1 character provides the basic logic functions in a centralized location at the
heart of the microprogram controlled logic. The easy accessibility of these fast basic
functions provide a means for efficiently building specialized complex operations.

The L1 character provides the basic logic functions selectable by the microprogram.
The logic functions provided consist of rotates, shifts (logical), no-operation,
complement, and incrementation. Also associated with the L1 character is the decod-
ing logic for these logic operations. The type of microprogramming used with the
functional character system relies heavily upon the fast and efficient manipulation of
bits within the various operands. To this end, shifts and rotates have been provided
which execute from1 to 31 positions in a single step (as opposed to serial operation).
Incrementation is accomplished with the use of a logic register which may also be used
as a simple holding register. The L1 character is 8 bits wide and contains the follow-
ing logic:

1. Bussing gates
2. Decoding logic
3. Rotate, shift, complement logic
4. Incrementer
5. L register
6. Gating to output bus

Figure 1-3 shows a block diagram of the L1 character. Several L1 characters may be
connected to form logic operations on words longer than one byte. A limit of 4 bytes
exists in order to maintain consistency of definition in the rotates and shifts.

Information entering the L l card from the various sources is bussed to form the input.
Then it is operated upon by the function selected in the current micromemory word and
decoded on this character (left side of Figure 1-2). The resultant is bussed to the out-
put where it leaves the character or is optionally stored in the L register (where it
would thus be available at the next micro-instruction time for use in the increment
operation or as an "L" source).

2-4

92816-6

MICRO-
MEMORY
CONTROL

r-----

FUNCTIONS

Figure 2-2. L1 Character Block Diagram. The shifts and rotates provided execute
from 1 to 31 positions in a single step, for fast and efficient manipulation of bits within
the operands.

2- 5

Section 2 - Design and U s e of the Functional Character Set
Subsection 1 - Computer Building Blocks

DESCRIPTION OF THE L2 AND L3 CHARACTERS

The L2 character provides the microprogram's major arithmetic functions while the
L3 character provides input/output logic capability. These major logic functions are
thus provided as optional since in many situations they are not required.

L2 Character - The L2 character provides the major arithmetic functions for use by
the microprogram. Addition is performed with carry look-ahead byte parallel. Con-
trol signals may condition the adder to alternately provide either of two special results
(a) a mod 2 addition instead of full addition o r (b) an input carry to the lowest order bit
for subtraction. All arithmetic is in 2's complement form. The L2 character con-
sists of two holding registers for the operands of the adder, the adder itself, decoding
and er ror logic, and bussing gates. Figure 2-3 diagrams functionally the L2
character.

A typical arithmetic operation using the L2 character might proceed as follows:
(1) first operand transferred to B register, (2) second operand transferred to A regis-
ter (3) after appropriate delay access result and transfer out of L2 character. The
e r ro r logic provides overflow and carry-out information.

L3 Character - The L3 character provides input/output capability for the micropro-
gram machine. The L3 character provides input gating for external devices - four
storing and three nonstoring channels. The storing input gating may be controlled by
either the microprogram o r the external 1 / 0 device itself. Four 1/0 output channels
are provided. Interrupt signal storage and interrupt mask storage for four channels
are available. Parity generation and check are provided for the four storing channels.
L3 also contains the necessary destination and selection logic. Figure 2-4 is a block
diagram L3.

To input data, an input line is selected under microprogram control resulting in
selected data entering an E register, o r in the case of a nonstoring input, entering the
character output select logic. To outputdata, the micromemory places the data in the
appropriate E register.

2-6

I OUfPUT

Figure 2-3. L2 Character Block Diagram. The L2 character performs all arithmetic
in 2's complement form and addition with carry look-ahead byte parallel.

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

==-I-

INTERRUPT

I
i

DESTJ NATl ON SELECTION

ID----- ------- - -
ENCODED ENCODED
SIGNALS SIGNALS

~

Figure 24. L3 Character Block Diagram. The microprogram 1/0 capability consists
of eleven I/O channels, interrupt signal storage and interrupt mask storage, parity
generation and check, and destination and selection logic.

2-7

Section 2 - Design and Use of the Functional Character Set
Subsection 1 - Computer Building Blocks

DESCRIPTION OF THE MICROMEMORY CHAJUCTERS

The micromemory is partitioned into three characters to provide maximum flexibility.
These characters provide the functions of the micromemory addressing, the micro-
memory array, and a micromemory word register.

The M 1 character, micromemory address register, allows for addressing up to
1024 micromemory words; the M2 character, micromemory word register, provides
for a full word; the MM character is a read-only micromemory array consisting of
256 words.

M1 Character - The M1 character provides the micromemory address register and
related functions. The 10 address bits of M1 allow for addressing up to 1024 micro-
memory words. The address is contained in the MMC (Micro Memory Counter)
register and serves to address the micromemory proper. The MMC register contains
the address of the next micro-instruction word to be accessed. Associated with the
MMC register is an incrementer which automatically steps through microprogram
address states. This steps the microprogram sequentially until the program issues an
unconditional transfer command. This transfer command takes the program out of the
present sequence. Figure 2-6 shows the block diagram for M1.

Branching o r transferring within the microprogram is provided by two modes: Uncon-
ditional transfer and conditional transfer. The M1 character is unique to a generating
system and therefore appropriately carries the time base whose signal is distributed
to other characters.

M2 Character - The M2 character contains a micromemory word register. The
register provides for a full micromemory word. The micromemory word is divided
into three fields. The first and the second fields are instructions, and the third is
a constant. The second instruction is transferred into the register location of the first
for execution resulting in sequential execution of the two instructions in the micro-
memory word. Timing is derived from the timing base. Figure 2-7 shows the block
diagram of M2.

MM Character - The MM character contains the micromemory array. The address
register and word register for the array are located on M I and M2 respectively. MM
is a read-only array. The presence of an address on the input lines causes the con-
tents of referenced location to appear on the output lines after an appropriate delay and
to remain there until the input address is removed. The MM character consists of
256 words of 50 bits each. Figure 2-5 shows the block diagram of MM.

Several MM characters can be combined to form a larger micromemory array. The
maximum organization is 1024 words. 92816-

-1
- I

------ l-
L

MICROMEMORY ADDRESS MICROMEMORY
DECODE ARRAY WORD

MICROMEMORY
ADDRESS

Figure 2-5. MM Character Block Diagram. Several of these arrays can be combined
to form a larger micromemory array, to a maximum of 1024 words.

2- 8

92816-

I

Figure 2-6. M 1 Character Block Diagram. Ten address bits are available to address
up to 1024 micromemory words.

92816-11

OTHER CHAR ACT€ R5 G

--I--- r-----
I
I
I

I
1

MICROMEMO RV I
I
I

--.I -- -IIII- J

WORD REGISTER

RO-INSTRUCTION REGISTER

MIC ROAR RAY b32-ba8

Figure 2-7. M2 Character Block Diagram. The register holds a full micromemoryword.

2-9

Section 2 - Design and Use of the Functional Character Set
Subsection 1 - Computer Building Blocks

DESCRIPTION OF THE P1, P2, and P3 CHARACTERS

The characters Ply P2, and P3 provide the secondary functions of scratch pad memory,
up/downcounting, and switching. These characters are one level removed from
the main data loop since their functions are required less often than those of L1, L2,
and L3.

~~

The P1 character provides 256 bits of storage in a scratch pad memory; P2 is an
expandable 8 bit up/down counter with byte look-ahead logic; and P3 is a switch allow-
ing any three input channels to be switched to any three output channels.

P1 Character - The P1 character is a scratch pad memory of 256 bits of storage. The
scratch pad is arranged into 16 registers of 16 bits each. Figure 2-8 is a block dia-
gram of P1. The P1 character is connected to the L3 character through which its data
flows. Up to 16 PI'S may be connected in series to produce a total scratch pad of
256 registers. Generally the bit width wil l match that of the logic unit.

P2 Character - The P2 character is an expandable 8-bit up/down counter with byte
look-ahead logic. The introduction of a time signal produces a real-time binary clock.
The counter can be read in parallel and is resettable to any desired value. Zero detec-
tion is provided which may optionally interrupt the microprogram and/or the main
program. The P2 character is connected to the L3 character through which data and
control pass. Figure 2-9 shows the block diagram detail.

The P2 character contains control logic allowing the counter to be in a run/stop state
dependent upon microprogram control.

P3 Character - The P3 character provides the capability of switching any three input
channels to any three output channels. A 16-bit width is provided. This configuration
allows three simplex simultaneous connections. Figure 2-10 shows the block diagram
for the switch.

The input and output channels of P3 may be connected to any external interfaces which
are electrically compatible. Storage is provided on the character for 9 bits of control
information establishing the state of the switch.

There is no restriction on the switch state; all possible configurations are allowed
(such as 3 inputs to 3 outputs, 1 input to 3 outputs, 3 inputs to one output, etc.).

2- 10

92816-12
I I

I
DATA REGISTER

ARRAY -----
Figure 2-8. P1 Character Block Diagram.
The 256 bits of storage are provided by
16 registers of 16 bits each.

READWRITE

NEXT STAGE (P2)

Figure 2-9. P2 Character Block Diagram. Introducing a time signal to this 8-bit
up/down counter produces a real-time binary clock.

92816-1

CAU

CONTROL (L3)

3 INPUT
CHANNELS
I /o

3 OUTPUT
CHANNELS
(IC BIT CHANNELS TYPICAL;)
M U

~~~ ~ ~~ ~~ 

Figure 2-10. P3 Character Block Diagram. This switch allows three simplex 
simultaneous connections. 

2-11 



Section 2 - Design and U s e  of the Functional Character Set 
Subsection 2 - Microprogram Repertoire 

NECESSITY FOR THE USE OF MICROMEMORY CONTROL 

Micromemory control allows modularization of control functions and straightforward 
design processes. 

A universal conclusion among LSI researchers is that control functions are more diffi- 
cult to modularize than functions related to data operations. Micromemory control 
technique was chosen as the solution for LSI implementation for several reasons. A 
micromemory, meaning here a read-only solid-state memory with its sequencer and 
instruction register, is easily partitioned into the large modules necessary for LSI 
implementation. Control functions in this form are then amenable to reproduction in 
large quantities of identical units. Also, design with control centered in one level of 
micromemory is more orderly and straightforward. 

The micromemory has been provided with a relatively sophisticated microprogram 
instruction repertoire. This means that the microprogram contains the essence of the 
machine's major mathematical functions, such as  multiply and complex sequencing. 
This is desirable since it represents an efficient use of hardware for these purposes and 
also reduces the number of different array types necessary. Also, a versatile reper- 
toire leaves the designer free to make units whose operation is as  simple o r  as  complex as  
desired. The degree of flexibility which this repertoire gives the character set is a 
major factor in its success. It should be stressed that the "micro operations" of the 
character set are a s  important a factor as  its logic design. This fact, a critical one in 
all LSI solutions committed to micromemory control, cannot be overemphasized. 

The micromemory word provides the control necessary for the functions of the 
characters under its direct influence. All these characters so controlled a re  defined to 
belong to a common instruction group. There is one and only one M2 character per 
instruction group. A phase group consists of usually one or two co-instruction groups 
containing a common timing base. There is one and only one M 1  character per  phase 
group as illustrated in the figure. 

In a phase group containing two instruction groups,one micromemory word, accessed 
from the first micromemory array (MM), operates upon and through its logic unit while 
the other word, accessed from the second micromemory array (MM), operates upon a 
second logic unit. Operations are carried out simultaneously in each unit with some 
cross translation. The option of including a second micromemory word allows for 
greater system capability by providing simultaneous operations; however, this does 
not affect the number of bits in the data word. (The data width is independently 
variable by byte. ) 

2-12 



92816-1 

Figure 2-11. Micromemory Organization. 
There is one M2 character per instruction 
group and one M1 character per phase 
group. 

2-13 



Section 2 - Design and Use of the Functional Character Set 
Subsection 2 - Microprogram Repertoire 

FUNCTION AND COMPOSITION OF THE MICROMEMORY WORD 

The micromemory word is designed with general instruction fields to provide a viable 

To fully utilize the building blocks of the previous section to implement the design of 
a digital system, a suitable microprogram repertoire of instructions is required. The 
repertoire is related to the scope of the logical functions to be performed and the 
amount of direction that can be conveyed to these logical functions within the contents 
of one micromemory word. 

The micromemory word provides the control necessary for the functions of the charac- 
ters under its direct influence. All these characters so controlled are  defined to belong 
to a common instruction group. There is one and only one M2 character p e r  instruction 
group. A phase group consists of usually one or two instruction groups containing a 
common timing base. There is one and only one M 1  character per  phase group. 

In a phase group containing two instruction groups one micromemory word operates 
upon and through its logic unit while the other word operates upon a second logic unit. 
Operations a re  carried out simultaneously in each unit with some cross translation. 
The option of including a second micromemory word allows for greater system capa- 
bility by providing simultaneous operations; however, this does not affect the number of 
bits in the data word. (The data width is independently variable by byte.) 

A micromemory word is composed of two 16-bit fields, a 17-bit field and a one bit 
field - two instructions fields, a constant field, and parity bit. (See Figure 2-12. ) The 
first and second instruction fields are  identical, with execution of the second instruction 
following the first by half a cycle time (a cycle time is the time required for a complete 
cycle of the micromemory). The instructions can access the constant field, introducing 
into the data stream this constant from the micromemory. At those times when the 
constant field is not used as such, it takes on additional capability as a transfer field. 

The instruction fields are each composed of three subfields - source, operator and 
destination a s  shown in Figure 2-13. The use of these subfields is described in the 
following topic. 

2-14 



I I I PARITY 1ST INSTRUCTION 2ND INSTRUCTION CONSTANT 1 
.I6 BITS 16 6 lTS 17 6 lTS 1 BIT 

Figure 2-12. Micromemory Word. This word provides the control necessary for the 
functions of the characters. 

92816-2 

I 

Figure 2-13. Instruction Subfields. The 
three subfields specify location of operand, 
operation to be performed, and destination 
of result. 

2-15 



Section 2 - Design and Use of the Functional Character Set 
Subsection 2 - Microprogram Repertoire 

THE THREE SUBFIELDS CONSTITUTING THE INSTRUCTION FIELD 

Source, operator, and destination subfields compose the instruction fields of the 
micromemory word. The source specifies the origin of the data to be operated upon as  
defined by the operator field; the destination specifies the location where the data 
result - will be stored after the operation is performed. 

Each instruction field is divided into three subfields - source, operator, and destination 
subfields - which are described below in detail. 

SOURCE SUBFIELDS - Each of the source subfields specify the source of information 
for the micro-command. The information selected by the source subfield is operated 
upon as  specified by the operator subfield. Data accessed by the source code appears 
on the input data bus. The sources a re  described below. 

GI  - G16 - The general set of registers providing the bulk of the fastest access 
storage in the functional system. A particular functional system may have 4, 8, 12, 
o r  16 registers in a standard register unit. Register lengths may vary subject to 
the following constraints: (1) all 4 registers within one subgroup must be of equal 
length; (2) register lengths vary by an integral number of bytes. There a re  no 
restrictions on the use of the general registers except for the undefined state 
caused by setting and accessing a register within the same instruction. 

E l  - E12 - These registers are  par t  of the L3 characters serving a s  I/O buffers. 
These four registers per  L3 character have the same characteristics as  the 
G registers. In addition, the E registers provide for input and output channels to 
outside units. 

- The Constant Source allows for bits of the micromemory word to be 
accessed. These bits enter the input data bus right-justified. 

- IPJC - The Increment Source accesses the incremented value of the content of the 
logic register of the L1 character. The incrementer logic is unclocked so that 
after an appropriate delay the increment output is valid without further signals and 
remains valid and available for access until the L register content is changed. 

- A - The A Register Source accesses the content of the A register (a holding regis- 
ter for the Arithmetic Unit and part of the L2 card). 

- ADD - The Add Source accesses the output of the Arithmetic Unit. Usually this 
output is the full sum of the contents of the A and B registers; however, the output 
may be modified. These modifications allow for a forced carry into the lower posi- 
tion of the adder o r  inhibiting of all carries so as  to produce an exclusive OR result. 

L - The L register source accesses the content of the L register of the L1 
gharacter, Accessing and setting the L register within the same instruction time 
produces an undefined state in L; this includes the use of the INC source. 

E 2  - This transfers the e r ror  code onto the input bus of the logic unit. 

*ADD - This source accesses the output of the Arithmetic Unit of a co-instruction 
group logic unit. (Two instruction groups a re  co-subgroups if they belong to a 
common phase group. ) All conditions applying to adder access under ADD apply 
equally here. 

2- 16 



OPERATOR SUBFIELDS - Each of the operator subfields specifies the type of opera- 
tion the micro-instruction involves. These operators a re  listed below and operate 
upon the data from the input bus and present the result at the output of the L1 character. 
Each operator is itemized below along with a description of its function. 

RS1- 31 - This operator provides for a Right Shift of the operand from 1 to 31 
position. 

LS1- 31 - This operator provides for a Left Shift of the operand from 1 to 31 
positions. 

MLK - The mask operator causes the source data to be masked by bits of the 
micromemory word. The bits of the source data a re  masked by corresponding bits 
of the mask. A mask bit of one and a source bit of one in corresponding positions 
will produce a one; all other combinations result in a zero. 

m P  - The no-operation operator provides for data on the input bus to appear on 
the output bus without alteration. 

R1 - R31 - This operator provides for a left rotate of the operand from 1 to 31 
positions. 

COM - - The Complement Operator produces the ones complement of the operand. 

DESTINATION SUBFIELDS - Each of the destination subfields specifies directly the 
register to receive the instruction result. These register designations a re  listed 
below: 

G1 - G16 - This destination provides entry into the general set of registers 
providing the bulk of fast access storage for the functional system. These a re  the 
aame registers described under the Source Subfield heading. 

E l  - E12 - This destination provides entry into 1/0 registers of the L3 characters. 
These a re  the same registers described under the Source Subfield heading. 

- B - The B Register Destination allows the instruction results to be set into the B 
register of the L2 card. The B register holds one of the operands for the 
Arithmetic Unit. 

L - The L Register destination allows the instruction results to be set into the logic 
register of the L1 card. 

- A - The A Register Destination allows the instruction results to be set into the A 
register of the L2 card. The A register holds one of the operands for the Arithmetic 
unit. 

2 - The *A Register Destination allows the instruction results to be set into the 
A register of a co-instruction group L2 character. 

2-17 



Section 2 - Microprogram Repertoire 
Subsection 2 - Microprogram Repertoire 

THE CONSTANT FIELD USED AS A TRANSFER FIELD 

when the 17-bit constant field is used a s  a transfer field, it permits the microprogram 
to specify 1 unconditional and 11 conditional transfers. 

The transfer field allows for microprogram specification of both conditional and 
unconditional transfers within the microprogram. The unconditional transfer provides 
a 10-bit address, the full  microprogram addressing capability. 

At all times when a transfer is not effected (either conditional or  unconditional) the 
micromemory counter is incremented by one. 

There are  basically three testable functions: (1) least significant bit - true; (2) most 
significant bit - true, and (3) all bits - false (true = 1, false = 0). 

There exist eleven conditional transfer test combinations and one unconditional transfer. 
The mnemonics used are  defined as  L = least significant data bit true; M = most signifi- 
cant data bit true; Z = all data bits false; I = data tested at input to logic unit; 0 = data 
tested at output of logic unit; and TRA = unconditional transfer, 

2-18 



DEFINITIONS OF TRANSFER MNEMONIC COMBINATIONS 

LI 

LO 

LIO 

MI 

MO 

MI0 

LIMI 

LIMO 

zo 
ZOLI 

ZOMI 

TRA 

Tests the least significant bit for the ftone" state on the input bus to the logic 
unit 

Tests the least significant bit for the tfone" state on the output bus from the 
logic unit 

Tests the least Significant bit for the tlone" state both on the input and output 
bus 

Tests the most significant bit for the ttone*t state on the input bus 

Tests the most significant bit for the rrone'' state on the output bus 

Tests the most significant bit for the Ironett state both on the input and output 
bus 

Tests the least significant bit and the most significant bit for the "one" state on 
the input bus 

Tests the least significant bit for the tlonet' state on the input bus and the most 
significant bit on the output bus 

Tests all bits on the output bus for zero 

Tests all bits on the output bus for zero and the least significant bit on the input 
bus for the tfonef' state 

Tests all bits on the output bus for zero and the most significant bit on the input 
bus for the Ifoneft state 

Bits of the micromemory word are transferred to MMC, causing a micro- 
program jump; 10 bits from the micromemory instruction register are 
transferred to MMC 

2-19 



Section 2 - Design and Use of the Functional Character Set 
Subsection 3 - Application Characteristics of the Computer Building Blocks 

DESIGN COMPLEXITY ALTERNATIVES WITH FUNCTIONAL CHARACTERS 

Simply by varying the number of characters and microprograms the designer may vary 
word length and functional capabilities of a single processor. He may also achieve 
parallel and multiple computation. 

Figure 2-14 illustrates the levels of machine complexities available to the designer. 
Part  A illustrates a very basic 8-bit machine, with simple logical, I/O, and register 
capabilities. Part B is the machine of part A expanded to 16 bits in its logic and 
register portions; however, no new functional capabilities have been added. Functional 
expansion is demonstrated in part C, where an 8-bit adder card and four 8-bit registers 
are  added. Part D represents a significantly greater jump. Illustrated is the dual- 
logic unit capability of the character set. H desired, it is possible to have two logic 
units, with different but coordinated microprograms, operating in parallel. They share 
the same sequencer (Ml), which both control. The G1 bank is common to both logic 
units . 
Part E illustrates an even higher level of expansion. Two totally independent micro- 
memory units (memory and sequencer) drive three different logic units, linked together 
through G1 cards. This level of complexity can be carried to an almost limitless 
expansion of micromemories and logic units bound together by shared G1 characters. 

With the hardware specified, the next major task is the writing of microprograms. In 
machines of this type this is as important as  the hardware design. Often the only 
essential difference between units designed for different purposes is their micropro- 
grams. 

As  an internal R&D program, Hughes built and tested a small expandable computer to 
demonstrate the feasibility of the Functional Character Method. The model consists of 
a truly expandable system as shown opposite. The characters used to build this com- 
puter contain 4 bits per character as opposed to 8 for the characters initially defined. 
They also have other simplifications, but do not lose any pertinent structures or 
characteristics. 

This model machine was built and demonstrated a s  described by merely adding charac- 
te rs  to step from stage to stage without making any changes in the back panel wiring or  
characters already in place, thus, demonstrating a truly modular capability for digital 
systems using the character set and its methodology. The number of degrees of 
freedom provides for minimum systems consisting of as  few a s  five characters to large 
systems limited only by the organization of the microprograms and macroprograms. 
The number and type of characters determine the physical size and capability, while the 
microprogram that controls them produces the system characteristics. 

2-20 



r 

1 ----- r I 
I I 

IP 

1 I 
Figure 2-14A. Basic Machine 

92816-1 

I--- 1 
I - '1 5s 
I 
1 -  
I 

I 

92816-1 

r---- 1 

[ ~] MM 

I 

I -  I 
I 
I 

Figure 2-14B. Data Length Expansion 

92816-19 --------- I 

I 
I 

Figure 2-14C. Functional Expansion Figure 2-14D. Parallel Computation Expansion 

-------- 
I--- 
I 
I 

I 
I 
I 

~~ 

Figure 2-14E. Multicomputation Expansion 

Figure 2-14. Four Stages of .Expandability. A comparison of Parts A and E illustrates 
the versatility of the character set as  it is adapted to both simple and complex situations. 

2-21 



Section 2 - Design and U s e  of the Functional Characterset 
Subsection 3 - Application Characteristics of the Computer Building Blocks 

RELIABILITY AND MAINTAINABILITY USING FUNCTIONAL CHARACTERS 

Although design with the character set is high in gate usage, the characters impose no 
speed penalty and give significant advantages in maintainability, reliability, and 
diagnosability . 
Design work to date indicates that most digital data processing equipment can be imple- 
mented using only the 10 characters. Gate counts run higher than equipment configured 
from discrete IC's, with 140% of the IC gate count representing an approximate upper 
bound. Speeds appear to be comparable to the latest airborne development computers, 
and promise to be competitive with ground equipment as well. 

For all systems where maintainability is a factor, units constructed from the char- 
acter set have the obvious advantage that only 10 types of spares are needed to insure 
system repairability. Nine of the characters a r e  identical in all applications. The 
tenth, the micromemory, stores a unique program for each application. To bypass 
the requirement for spare ROM's of specific patterns, research is currently underway 
at Hughes to develop an electrically alterable ROM. It would be possible to deliver 
the MM characters 'blank" from the manufacturer to be written into by the user with a 
one-shot process, and thus the memory would represent a single part to be spared. 

Reliability of character-built LSI computers is enhanced by the reduction in the number 
of lead-bonds. 

The characters enjoy a natural advantage in the diagnostic field. The arrays establish 
replaceable units which are quite large, thus minimizing the degree of fault isolation 
required. The bussed structure provides several convenient points for application and 
observation of diagnostic signals. Also, there a re  only a certain number of allowable 
ways to interconnect characters. This, plus the fact that there is no intervening logic, 
precludes the possibility of unexpected timing o r  logic problems arising. Once the 
fault detection and isolation problems are solved relative to a character, the solution 
is applicable to all combinations in which that character is found. 

Furthermore, since every character is under the control of some micromemory, a 
third major approach, along with more traditional hardware and software approaches, 
to diagnostics becomes available. Investigations have shown that microprogram tech- 
niques are extremely effective in both detecting and isolating faults in the characters. 
This approach also promises fast diagnostic speeds. Not only are the diagnostics car- 
ried out at microinstruction speeds rather than machine-instruction speeds, but in 
large machines each micromemory can simultaneously diagnose the characters under 
its control. 

A s  an example, consider the application of these techniques to the diagnosis of the 
NASA MCB. Each of nine micromemories can simultaneously diagnose 7 to 38 char- 
acters each. Any fault need be isolatable to one of only 206 characters, for which a 
replacement is chosen, assuming an operator is present, from 10 basic part  types. 
(Of course, the NASA MCB actually reconfigures automatically in case of error.) 

Problems currently under investigation are diagnosis of the micromemory itself, 
amount and type of hardware required, and the applicability of more conventional tech- 
niques. The table shows preliminary results as to the amount of hardware required 
for diagnosability for the various MCB units. The level of fault isolation for the MCB 
with this method is 89%. It may be possible to develop techniques for 100% fault 
detection and isolation to the character level. 

2-22 



These diagnostic results were developed under Hughes internal funding in a parallel 
effort in evaluating the characters. 

Unit 

NASA MCB CU 
NASA MCB AU 
NASA MCB 1/0 

NASA MCB MU 

NASA MCB CAU 

NASA MCB Entire System 

TABLE 2-11. ADDED HARDWARE AND HARDCORE % FOR THE UNITS OF THE 
NASA MCB - DIAGNOSTIC MICROPROGRAM APPROACH 

Added" 
Hardware % Hardcore % 

16.2% 0.94% 
16.3% 0.88% 
21.5% 1.09% 
35.8% 2.64% 

7.8% 0.40% 
16.5% 0.95% 

I I 

Definition of Terms: 

Added Hardware '% - The percentage by which the hardware of the system increases to 
provide diagnostic capability. 

Hardcore % - The percentage of hardware in which faults will be undetectable. 

' Level of Fault Isolation '% - The percentage of faults which may be isolated to one 
character. 

(These results accomplished as part of an overall evaluation of character diagnosabil- 
ity performed under Hughes Internal Development Funding. ) 

2-23 



Section 2 - Design and Use  of the Functional Character Set 
Subsection 3 - Application Characteris tics of the Computer Building Blocks 

AIDS FOR DESIGN AUTOMATION CAPABILITY WITH THE CHARACTER SET 

The character set provides the potential for a complete design automation process 
after the necessary software is developed. 

The area of application stressed for the character set has been computer implementa- 
tion. Though the computer makes a meaningful application, there is, however, great 
economical advantage to be gained through application of the characters to digital 
equipment of unique or low volume design. Using the character methodology in such 
systems can reduce by large factors the engineering costs, design, and checkout time 
involved. To effectively achieve such a goal several design aids are used--a character 
assembler, a microprogram assembler, and a system simulator. These three pro- 
grams allow for complete design automation capability. 

The character assembler input consists of encoded instructions having the information 
content of a block diagram as exemplified by Figure 2-15. This information in con- 
junction with the character characteristics (which form the data base of the assembler) 
is processed by the assembler to produce an output consisting of wiring information 
for the interconnection of the characters. The character assembler output may be in 
the form, for example, of a wire  list, an N/C tape for automatic wiring machine, or 
a tape input to a routing program for printed circuit card etch layout. 

The encoding information for the micromemory array is provided on tape by the micro- 
program assembler. This tape is used directly in the manufacture or alteration of 
the array. The microprogram code is assembled with the usual aids provided by 
machine language assemblers. 

System simulation is accomplished from (1) information of the machine structure as 
input to the character assembler, (2) the microprogram code as input to the micro- 
program assembler and (3) instructions from the system designer input directly to 
the system simulator. The degree to which system checkout is dependent upon the 
sophistication of the simulator. However, because of the high level of definition of 
the characters themselves the simulator need not be concerned with details of the 
Boolean logic or signal interface consistency between characters. Therefore a 
worthwhile simulator is seen as an achievable goal. 

Thus, the complete system--microprogrammable characters, character assembler, 
microprogram assembler, and system simulator--provide the system designer the 
capability for total system design from his desk. Furthermore, he is not concerned 
with logic design in any form. When he specifies the following: 

1 .  character configuration 
2 .  microprograms 
3 .  simulation instruction 

these items are  provided for: 

1. character assembly 
2 .  back panel wiring 

2-24 



3 .  micro-array encoding 
4. system checkout 

all without the services of a logic designer or the technician's help. In fact, i t  is 
conceivable that no human intervention need take place between the system designer 
and his designed hardware. 

92816. 

I 

CONTROL UNIT AUXILIARY UNIT 

Figure 2-15. Typical Functional Character Configuration. Functional character 
configuration is a major input in the design automation process. 

STEPS IN AN AUTOMATED DESIGN PROCESS 
USING FUNCTIONAL CHARACTERS 

0 Designer Identifies Information in Above Diagram (number of characters, type of 
characters, interconnections) 

0 Character Assembler Produces Wiring Data 

0 Designer Encodes Micromemory Array 

e System is Simulated Based on Machine Structure and Microprogram 

0 Micromemory Arrays Manufactured from Array Encoding a s  Modified After 
Simulation 

0 System is Assembled and Checked-out 

BLANK PAGE FOLLOWS 2-25/2-26 



SECTION 3 
MCB COMPUTER PRELIMINARY IMPLEMENTATION 

Introduction to the NASA Modular Computer ....................... 
The Modular Computer Breadboard ............................. 
Overall Design of the MCB Computer 
Control Unit Direction of the Subcomputer Units 
Functional Description of the Control Unit ........................ 
Functional Description of the Arithmetic Unit  ...................... 
Functional Description of the Input/Output Unit ..................... 
Configuration ........................................... 
Execution Rates for the Hughes and Existing Versions of the MCB ........ 

Implementation of the MCB With Functional Characters . . . . . . . . . . . . . . .  ........................... .................... 

Functional Description of the Memory Unit ........................ 
Functional Description of the Configuration Assignment Unit . . . . . . . . . . . .  
Combined Control and Arithmetic Units in su1 Alternative 

Evaluation of the Functional Character Design of the MCB . . . . . . . . . . . . .  

3-0 
3-2 
3-4 
3-6 
3-8 

3-10 
3-14 
3-16 
3-18 
3-22 

3-26 
3-28 
3-30 



Section 3 - MC B Computer Preliminary Implementation 

INTRODUCTION TO THE NASA MODULAR COMPUTER 

NASA and Hughes are exploring means of implementing a modular computer to achieve 
the long life and flexibility required for future space missions. 

The NASA Electronics Research Center (ERC) in Cambridge, Massachusetts, has 
undertaken a broad program to satisfy flight computer system requirements for future 
missions, including versatility and long term reliability. Specific attention to these 
requirements is necessary because flight qualified aerospace computers , and even some 
still under developpent, have been designed for increased computational speed and 
arithmetic capability, but not for the long life reliability and application flexibility that 
will be required for future space missions. For example, the mean time between 
failure (MTBF) of available aerospace computers lies in the range of 2,000 to 5,000 
hours, whereas long space missions will require an MTBF of 105 hours. 

Several computer organizations have been described in the literature which include 
redundancy for increasing mission reliability, but still neglect applications versatility. 
Some non-spaceborne computers of the array or multiprocessor type are currently being 
developed. These systems, although potentially capable of meeting ERC's versatility 
and reliability objectives, lack design features for space applications (component relia- 
bility, weight, volume, radiation hardness, etc. ). 

To satisfy the requirements, NASA ERG is studying a modular computer organization. 
This Modular Computer, as a potential component of a guidance and navigation sub- 
system of several potential space booster configurations, must be applicable to at least 
four distinct missions: the synchronous satellite, lunar orbiter, Mars  orbiter, and 
Jupiter fly-by solar probe. Computer memory size, word length, and speed require- 
ments for each phase of these four missions have been estimated by means of computer 
simulations. The object computer was assumed to have single-address and sequential 
operation. 

The most severe requirements in terms of speed and accuracy occur during boost. Post 
injection computational requirements are low and the accuracy of computations is far 
less critical. Therefore, to satisfy the composite requirements a Modular Computer 
(MC) organization as shown in Figure 3-1 has been structured. Each column of the MC 
can satisfy a 1.5 x 105 instructions/sec requirement. 

The computer can be configured to operate as a number of parallel processors, with 
each segment or column solving an independent problem that may be different or identical. 
Each column in turn contains a number of blocks called modules, which may be con- 
figured so as to form patched columns, using modules from different physical locations; 
for example, a diagonal (see Figure 3-1). This structure meets the high speed compu- 
tational requirements for attitude control associated with strapdown systems, and also 
achieves the reliability required for long time mission success. 

3 -0 



92816-3 

1 
COLUMN 

MODULE 

MODULE 

e 
e 
e 

~1 MODULE e e e e e e e a e e e e ~1 
e 
e 
0 

e 
e 
e 

Figure 3-1. NASA Modular Computer Showing Columns and Modules. Identical modules 
in rows provide redundancy while working computers can be configured in many ways 
from the distinct columnar module types. 

3 -1 



Section 3 - MC B Computer Preliminary Implementation 

THE MODULAR COMPUTER BREADBOARD (MCB) 

A breadboard version of a two-column subset of the modular computer has been con- 
structed to investigate mission algorithms, parallel processing, and automatic 
reconfiguration. 

A breadboard model of the modular computer consisting of two columns has been built 
and is currently in the terminal stage of system checkout. Software is being developed 
concurrently with hardware. This Modular Computer Breadboard (MCB) will be used 
for  experimenting with different structures in order to enhance the NASA ERC modular 
computer objective. The organization of the Modular Computer in a three column con- 
figuration is shown in the figure. 

During boost, the three columns of the modular computer operate concurrently in a 
triple modular redundant (TMFt) mode, with majority voting at the outputs. After orbit 
injection, the TMR mode is terminated and the ensemble of modules is configured so 
that only one computer remains operating; the others are turned off to conserve power 
and improve reliability. (The failure rate of non-operating circuits is assumed to be 
lower than that for operating ones. ) System interlocks are provided which insure that 
the on-computer performs correctly (within bounds). If this is not the case, the Con- 
figuration Assignment Unit  (CAU) is triggered. It is the task of this unit to assemble at 
least one computer out of all the available modules. 

The availability of good modules is determined by means of hardware-software tests with 
interlocks. As may be seen from the figure, each of the computers has been separated 
into four functional modules: a Memory Unit, Control Unit, Arithmetic Unit, and a IO 
Unit. The Configuration Assignment Unit, (CAU) in conjunction with the CU, together 
with the Configuration Control Switches (CCS), can automatically reconfigure the 
ensemble so as to form an operating computer. Such a computer may consist of any 
combination of M u d ,  CU-i, AU-i, IO-i. 

Although the figure shows a tri-column configuration, the actual flight computer may 
require additional columns and some configuration adjustment in order to meet the 
mission time requirements. 

The breadboard version of the modular computer contains two columns, This is suffi- 
cient for the intended experiments: 

1. Determination of mission algorithms within specified accuracy limitations and 
consistent with the intended application. 

2. The use of parallel processing to achieve higher effective computational speed. 

3. Automatic detection and isolation of the occurrence of a computer module failure, 
and automatic reconfiguration to eliminate the effects of the faulty element. 

3 -2 



92816-22 

I I  I I ' I  

1 POWERSYSTEM I 

TO A L L  
MODULES 

4 + + 
SW I TC H-CCS 

+ 4 
I"';.'' 

SWITCH-CCS 

A 4 A 

IOU-I CJ IOU-2 0 IOU-3 +1 
# t t 

SW ITCH-CCS 

t ! t '  

Figure 3-2 a Modular Computer Organization, The breadboard is a two-column config- 
uration which is sufficient to demonstrate computation, modularity, and automatic 
reconfiguration. 

3-3 



Section 3 - MCB Computer Preliminary Implementation 

IMPLEMENTATION OF THE MCB WITH FUNCTIONAL CHARACTERS 

Implementation of the MCB using functional characters demonstrated ease and speed of 
design together with the ability to retain required performance characteristics. 

In order to evaluate the character set, the breadboard version of the modular computer 
(MCB) was implemented. Design with the character set is a straightforward procedure 
which may be described as follows: 

1. Assign character types to the unit according to functional requirements. 

2 .  Microprogram the unit in detail to accomplish its assigned function. 

i 

3. Determine the number of each type of character needed according to the requirements 
of the microprogram. 

4. Revise the assignment of character types according to the needs of the microprogram. 

Application of this procedure to the MCB revealed that the structure of each unit was 
similar. Each required L1 characters for storage of operands, and L3 characters for 
1/0 functions and communication between units. The micromemory characters Ml,  M2 
and MM were necessary in each unit for control. Further study of the functions of the 
units in the MCB revealed that L2 characters would be necessary only in the AU (for 
complex arithmetic) and CU (for effective address calculation). Assignment of P- 
characters was done strictly on the basis of need. Scratchpad memory requirements in 
the CU were satisfied by P1, counter requirements in the CU and CAU by P2, and switch 
requirements by P3. 

Microprogramming was the major task of the design procedure. Although the structure 
of each unit was similar, the microprograms were quite different, reflecting the dif- 
ference in the function of each unit. The microprograms determined the actual number 
of Characters necessary and lead to revisions in the choice of character types. (For 
example, microprogramming revealed that G1 was not necessary in the MU.) 

The initial design for the MCB was accomplished with about 6 man-months of effort, in- 
dicating the relative ease of designing with the character set. The CAU was the most dif- 
ficult unit to design since it involved connecting characters (Glfs) in other than common 
configurations. The MCB presented here is an improved, re-microprogrammed version 
compared to the MCB described in the first interim report. 

The functional and operational aspects of each unit of the MCB have been preserved in 
the functional character implementation. This plus the similarity in performance speci- 
fications (such as hardware count and instruction execution rates) between the character 
set and original MCB verifies the ability of the character set to be applied successfully 
to a specific design problem. Some detail of implementation (such as  control signals 
for inter-unit communication, use of memory arrays, etc. ) was tailored to the character 
set, so this version should not be expected to be identical to the original MCB although 
it is functionally equivalent. 

Figure 3-3 shows the character content of each module adjacent to the name of the 
module. The number to the left of the shash (/) is the total number of characters used 
per module. The number to the right of the slash is the number of character types used 
in that module. Note that the number of characters is additive, whereas the number of 
character types is not; the sum of the character types is 10. 

3-4 



The following topics describe in detail the character implementation of the MCB. - 
92816-40 

I AU-1 21/7 I 
L1 L1 L1 L1 I-++H-H L 2  L 2  L 2  L 2  L 3  

G 1  G 1  01 G 1  1 ~ 1  
AU-2 21/7 

~ 

DUPLICATE 

t I 
ccs 2/1 P3, P3 211 I 

4 A 
t 

1 c u - 1  35/9 1 

- I 

# t 
c u - 2  35/9 

DUPLICATE 

I 

Figure 3-3. Functional Character Implementation of MCB. This implementation verifies 
the ability of the character set to be applied successfully to specific design problems. 

3 -5 



Section 3 - MCB Computer Preliminary Implementation 

OVERALL DESIGN OF THE MCB COMPUTER 

Hughes has analyzed the MCB and prepared a computer design as a test of the generality 
of the functional character set. The Hughes interpretation of the MCB is presented in 
this and the following topic. 

The existing design of the NASA MCB Computer has been emulated as a test of the 
generality of the functional character set. All aspects of the computer have been con- 
sidered. Parity generating and checking will be done by hardware included as part of 
the L3 character. The contents of one register on each GI character will be available 
as direct outputs from the character. This, in addition to L3, will provide for inter- 
unit o r  external discrete signals. Because of the nature of the character set, internal 
e r ror  detection can be provided easily by a small diagnostic program in micromemory 
in addition to planned hardware e r ro r  detectors. Work on the data block transfers has 
been completed. 

Control Unit (CU) - The CU controls the operation of the MCB subcomputer of which it 
is part. Main program instructions are accessed and decoded; the CU then performs 
necessary effective address calculations and operand accessing. If the instruction is 
one that is performed in the Arithmetic Unit (AU), the CU transfers the instruction's 
operator field and both operands to the AU. If the instruction is an input-output data 
block transfer, the CU transfers the instruction to the Input/Output Unit (I/O). All  
other instructions are performed internally by the CU. If the instruction is one that 
produces an answer, the CU will store the answer in the specified location. Operation 
of the CU is described in more detail in the following topic. 

Arithmetic Unit - The Arithmetic Unit receives the current instruction operator field 
and the actual operands from the Control Unit. It decodes the operator field, performs 
the operation accordingly, and transfers the resultant back to the Control Unit. The AU 
has the responsibility to perform all floating point operations, multiplies, and divides. 
The AU has the capability to detect overflow from arithmetic operations. 

Memory Unit - Each MU contains one main memory module capable of storing 4,096 
words. The address and data registers associated with the module will be read-write 
registers addressable by the MU microprogram similar to the G registers. The data 
to and from these registers follows the usual data paths of the characters. The MU 
interfaces with the Control Unit  and Input/Output Unit. It can transmit data to and from 
either unit, acting on commands from either. The address must be provided by the 
CU o r  I/O. For input-output transfers, data flows directly between the MU and 1/0 
units. The MU will respond first to the 1/0 in case of conflict. 

Input/Output Uni t  - The Input/Output Unit is provided with four input and two output 
channels with expansion possible. It provides a data path between any of its external 
devices and the Memory Unit (for data flow in either direction) upon receipt of the 
proper commands from the Control Unit. An independent unit, the 1/0 is capable of 
controlling the MU and all input/output devices, and carrying out an entire block trans- 
fer. The interface with external devices is 32 bits wide. The CU maintains control 
over the input/output transfer to the extent that it can query the 1/0 as to status of the 
transfer and can, between words, overwrite one block transfer command with another. 

Configuration Assignment Unit  - The CAU continually monitors the idle-time counter 
and the diagnostic-time counter. If either is permitted by the CU to go to zero, the 
CAU immediately takes over the reconfiguration duties. After configuration, the CAU 

3-6 



notifies the appropriate CU by means of an interrupt that it is to perform a self-check 
diagnostic. If this fails, the CAU tries another configuration. The CAU also has the 
duty of comparing mask and status registers. If a corresponding "one" is detected, it 
notifies the appropriate CU to start a diagnostic which may eventually arrive at a new 
configuration. The CAU accepts this new configuration from the CU and implements it. 
Then it initiates the self-check in the new subcomputer. If this test fails, the CAU takes 
over the complete reconfiguration responsibilities, 

The part of the CU in the process is as follows. Upon receipt of the command to initiate 
a diagnostic, it stores the address of the present instruction, branches to the main 
memory location of the first statement of the diagnostic, and resets the idle-time 
counter and diagnostic-time counter. If the diagnostic is successful it stops the 
diagnostic-time counter. If any e r ro r  occurs it drops into an idle mode immediately, 
letting the diagnostic counter go to zero which allows the CAU to take over. At  the end 
of a successful diagnostic the CU either notifies the CAU or  resumes operation if the 
diagnostic was self-initiated rather than CAU-initiated. 

The CAU contains 16 registers. Various other units may read or write directly into 
these registers. The versatility of the G1 character makes it possible for any unit to 
write or read its assigned registers without calling attention of the CAU. This is 
possible because the CU-CAU interface is not restricted to 8 bits. The CAU also con- 
tains 4 counters which are similar to the registers in their accessing and address 
characteristics. The CAU has physical control over the byte interface switches. These 
switches are designed to be addressable and to accept coded state information and act 
accordingly. The CAU is capable of setting the status register according to information 
received from discretes from any unit o r  by CU interrupt. 

3-7 



Section 3 - MCB Computer Preliminary Implementation 

CONTROL UNIT DIRECTION OF THE SUBCOMPUTER UNITS 

The Control Unit (CU) directs the operation of its subcomputer by means of micropro- 
grammed subroutines which respond to instructions and data stored in local memory. 

The CU is provided with a local data memory (LDM) capable of holding 64 words of 
information. Data is transferred in blocks of words to and from the LDM and the 
Memory Unit (MU) according to special program instructions. Access to the LDM by 
the CU is considerably faster than to main memory. Use of the LDM makes it possible 
to avoid accessing main memory each time an instruction is executed. 

The CU also has a local program memory (LPM) similar in construction to the LDM but 
containing instructions rather than data. In normal operation, the CU tracks its pro- 
gress by storing in fast-access registers the address of the present instruction in 
both the LPM and the main memory. The instruction itself is accessed from the LPM, 
which acts as a buffer between main program memory and the CU. 

At present the most desirable scheme for loading the LPM is to take advantage of the 
CU-AU overlap time - that is, rather than letting the CU hang up waiting for the AU 
to finish a calculation, the time may be used by the CU to update the LPM loading. Any 
program branch instruction initiates or changes the sequence of the LPM loading. 

The CU directs the other four units of the subcomputer as follows. (See facing table for 
subroutines. ) 

0 Arithmetic Unit - The CU sends some of the operation codes and associated oper- 
ands to the AU. It accepts the resultants from the AU. 

0 Input-Output Unit - The CU transfers input and output command words to the I/O. 
No further participation of the CU in the input-output process is required. The 1/0 
unit establishes a data path between the MU and the appropriate device and performs 
all functions necessary for completion of the information transfer. The CU may 
request the status of the transfer from the I/O, which will (at the completion of the 
current word being transferred) reply by sending the CU the word count (number of 
words remaining), address in main memory of the next word, and the number of the 
external device involved. 

0 Memory Unit - The CU can read o r  write into main memory one word at a time or 
in blocks. The CU initializes the MU with a command and address and, after an 
appropriate delay, accepts or sends the data to the MU. In case of conflict, the 1/0 
unit has priority for use of the memory. 

0 Configuration Assignment Unit (CAU) - Communication between the CU and CAU 
differs from the original (MCB) design. The CU can write into o r  read those regis- 
ters and counters assigned to it but physically contained in the CAU (mask registers, 
diagnostic clocks, cross communication registers, etc) without disturbing the flow 
of operations of the CAU. The CU rpmains attentive to CAU interrupts and responds 
to commands from the CAU to initiate diagnostics. The CU can transmit a new 
configuration to the CAU by a CAU interrupt. 

3-8 



TABLE 3-1. LIST OF CONTROL UNIT SUBROUTINES 

Mnemonic 

EA3 

EA1 

RAc2 

RACl 

RAW 
AU NPT 
INT AU 

IO NPT 
INT IO 
CAU NPT 
INT CAU 
INT MUA 
INT MU TO MU 
INT MU TO CU 

No. 

1 

2 

3 

4 

5 
61 
71 

81 
91 

10 1 
11 r 
1 2  

14 

Calculates effective address (appropriate index register 
contents plus contents of const. field of instruction = 
address) when 3 are needed. 
Calculates effective address when only one is needed 
(access a portion of 1). 
Given an address at random (except one in main memory) 
it accesses the appropriate storage device and reads in 
the data. Access 2 address. 
Similar to 3 except only the data from 1 address is 
called in. 
Writes data into any address desired. 

used for communication with the AU. 

used for  communication with the I/O. 

used for communication with the CAU. 

used for communication with the MU. 

3-9 



Section 3 - MC B Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE CONTROL UNIT 

The Control Unit through its versatile, 16-bit double-logic unit controls the operation of 
the MCB subcomputer. 

The Control Unit is a 16-bit double-logic-unit machine. The principal logic unit, which 
interfaces with local memories, clocks, the MU, and the CAU, has adder (L2) capability. 
The auxiliary logic unit, which interfaces with the AU and 1/0 UNITS, has no adders. 
Program counters, index registers, buffers, and working registers are in the common 
G1-register bank (Figure 3-4). CAU equipment interfaces with the CU wherever the 
union is most efficient. 

Operation of the CU is best illustrated by its microprogram flow chart (Figure 3-5). 
The CU executes one instruction per loop of the microprogram. Upon obtaining the 
instruction from the LPM, it enters the operator field to the micromemory counter to 
effect the decoding. The CU then proceeds along one of 32 parallel paths which may 
be grouped into 4 main categories, described below. 

If the instruction is an input-output command, the instruction word is immediately 
transferred to the appropriate 1/0 Unit. This is the extent of the CU's participation in 
the 1/0 process. 

If the command is one of 7 that are  performed in the AU (floating point or  multiply 
operations), the CU utilizes its subroutine repertoire to calculate the effective address 
(EA3 or EA1) and access the operands (RAC2 or  RAC1). The "Random Address Call" 
subroutines (RAC) are considerably complex and may use any o r  all of the CU's capa- 
bility to access data. The CU then communicates with the AU as follows. If the AU is 
still processing a previous command, the CU utilizes the overlap time to update the 
LPM. When the AU becomes attentive, the CU first accepts and stores any answer the 
AU has available. Then the next operand group is sent to the AU. All  AU communica- 
tion is through the L3 of the auxiliary CU logic unit. 

If the command is a local data memory block transfer, it is processed one word at a 
time. Between words the CU checks for interrupts (notably a CAU interrupt o r  an 
AU l'answer ready" signal) just as it normally would between instructions. Communi- 
cation with the MU is by means of subroutines which drive the two L3's of the CU main 
logic unit. Data passes to and from the LDM through these same L3 cards. Therefore 
block transfer data bypasses most of the CU logic circuits. 

The fourth category is composed of internally processed CU functions (not requiring 
AU o r  I/O). Originally this was composed of memory loads, stores, and program 
control functions (branches). To this have been added the simpler mathematical func- 
tions such as rraddrt (not floating point), "and, t t  "or, etc. The reason for the altera- 
tion follows. The generality of the character set results inthe CU having much the 
same logical properties as the AU. This means the CU can perform the simpler func- 
tions in less time than it would take to establish an AU communications link. The only 
drawback is the 16-bit capacity of the CU. All operations must be double-precision, but 
experience shows that given this character set and the simpler functions, the penalty is 
small. 

In this category liberal use is made of subroutines to calculate address, access data, 
store answers, and communicate with other units. The CU microprogram example, 
"direct add," is taken from this category (Figure 3-6). 

3-10 



Before completing the loop and going on to the next instruction, the CU checks for 
external interrupts. 

928164 

DATA & CONT 
TO AND FROM 

CONTROL TO 
ALL CHARACTERS 

12 16-BIT REGISTERS 
0 LPM PROGRAM COUNTER * MAIN MEM. PROGRAM COUNTER 
0 INDEX REGISTERS 
0 ADDRESS BUFFERS 
0 SCRATCHPAD 

OF PROGRAM 

DATA 

TO CAU REGISTERS AND COUNTERS 

I 
=AUXILIARY FROM CAU 
PROCESSING REGlSTfRS 

I 

DATA AND CONTROL 
TO AND FROM I/O 

DATA AND CONTROL 
TO AND FROM AU 

Figure 3-4. MCB Control Unit Block Diagram. Versatility is provided by the 16-bit 
double-logic unit. 

3-11 



Section 3 - MCB Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE CONTROL UNIT (Continued) 

3-12 



TO OVERFLOW 
ROUTINE 

I 
I 
I 

INCREMENT 
MM PROGRAM 
COUNTER 6 7  

I 
I 

@ I  

Figure 3-6. Control Unit Microprogram Flow Chart - Detailed Example. This 
"direct add'' microprogram is one of the internally processed CU functions. 

3-13 



Section 3 - MC B Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE ARITHMETIC UNIT 

The Arithmetic Unit  is a 32-bit, single-logic-unit machine which is responsible for 
seven arithmetic instructions. 

The Arithmetic Unit consists of four L1 and four L2 cards providing 32-bit logic and 
adder capability, one L3 for CU communications, and G1 cards for processing and oper- 
and and answer buffering. The AU performs the following instructions: multiply, most 
and least significant halves, floating point multiply, divide, add, subtract; and 
add-not-normalized. 

The Arithmetic Unit is a 32-bit single-logic-unit machine. For  more complicated 
functions, this arrangement, rather than that of the CU, is optimal. Four L1 and four 
L2 cards provide 32-bit logic and adder capability. One L3 is sufficient for CU com- 
munications. One %bit register serves as a command buffer and three 32-bit registers 
as operand and answer buffers; the remainder are working registers. (See Figure 3-7). 

As illustrated by the microprogram flow chart (Figure 3-44), the AU utilizes command 
decoding and parallel branches similar to those of the CU. The AU's responsibility has 
been reduced, consisting now of the following seven instructions: multiply, most and 
least significant halves; floating point multiply, divide, add, subtract; and add-not- 
normalized. Each loop processes one instruction only. 

Outside of setting "answer ready" and llemptyl' flags to the CU, the AU is passive, 
responding to CU interrupts. Except for start-up, the AU will not process until it has 
received two CU interrupts. One is for the answer and the other for new operands; 
order does not matter. Programming and timing make it impossible for the CU to 
attempt the same subroutine twice in succession. 

3-14 



92816- 

32-BIT 
DATA 
PROCESSOR 

t 
L1 L1 L1 L1 

t LOGIC 
4 

CHARACTER 
CONTROL 

8 32-BIT AND 4 &BIT REGISTERS 
FOR PROCESSING A N 0  
OPERAND AND ANSWER BUFFERING 

Figure 3-7. MCB Arithmetic Unit Block Diagram. With its 32-bit single-logic unit, 
the machine is better than the CU for more complicated functions. 

92816-2 

POWER 

OP FIELD-MMC 
7-WAY BRANCH 
TO SUBPROGRAMS 

Figure 3-8. Arithmetic Unit  Microprogram Flow Chart. The Arithmetic Unit is 
responsible for seven arithmetic functions. 

3-15 



Section 3 - MC B Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE MEMORY UNIT 

Each Memory Unit  contains one main memory module capable of storing 4,096 words, 
and the few characters needed to transport data and operate the memory module. 

The memory unit is the simplest unit from a character standpoint. It carries only a 
minimum of characters to transport data and to operate the memory module 
(Figure 3-9) It is desirable to have main memory address and data registers that can 
link to LI and operate under micromemory control. 

The flow chart (Figure 3-10) indicates that the normal mode of the MU is to remain 
attentive for external interrupts. 
to the I/O. Otherwise it responds to the CU. In an operation carefully timed to allow 
maximum overlap, the MU accepts the address, then branches according to the unit's 
command. Contained in the subroutines are steps to operate the memory module and 
transfer data to and from the units. 

Upon receipt of interrupts, the MU will respond first 

3-16 



---------------- rMu 
MAIN MEMORY STORAGE 
MIN: 4096 WORDS OF 

36 DATA BITS 

DATA AND CONTROL 
TO AND FROM 1/0 
AND CU 

92816-28 

Figure 3-9. MCB Memory Unit Block Diagram. A minimum of characters are required. 

92816-29 

I 
t 

c 

INITIALIZING 
ROUTINE 

POWER 
ON 

1 

P-WAY SPLIT 

COULD MAKE 
SPLITS &WAY 
FOR DOUBLE CONTROL 

I 
Figure 3-10. Memory Unit Flow Chart. The normal mode is to wait for external interrupts. 

3-17 



Section 3 - MCB Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE INPUT/OUTPUT UNIT 

The Input/Output unit, which interfaces with the memory unit and all 1/0 devices, 
requires the most intricately sequenced microprogram. 

The Input/Output Unit can control the Memory Unit and all input/output devices. The 
characters provide a 32-bit data interface with external devices and can carry out an 
entire block transfer. 

Four L3 cards are used almost to their full capacity to provide an interface with four 
input devices, two output devices, the CU, and the appropriate MU (Figure 3-11). Two 
of the inputs, referred to as "No. 0" and "No. 1, I t  are  MCB-interrupting inputs which, 
to the best of our knowledge, do not exist in the current version of the MCB. Their 
presence requires two G1 cards to store the addresses of their inputs in main memory. 
The remaining four 1/0 devices are  those covered by the 1/0 block transfer word, 
stored in two of the 32-bit registers. The remaining registers are  scratchpad. 

The microprogram of the 1/0 is the most intricately sequenced of any unit (Figure 3-12). 
The idle mode is represented by the waiting-for-interrupt loop in the middle left edge 
of the figure, Upon receipt of interrupts, input unit No. 0 has priority. The upper line 
of the flow chart is the branch servicing unit No. 0 (storing its input in main memory). 
Input unit No. 1 has next priority. Its servicing branch is nearly identical to that of 
No. 0. 

The CU has lowest priority. A CU interrupt means either a replacement of one of the 
block transfer commands or a request for the current status of one of the block transfer 
commands. Consequently a CU interrupt initiates a four-way decision according to a 
few key bits. 10 and 11 are shown as indicating requests for the priority word (GO) o r  
the normal word (Gl) to be sent to the CU. A subroutine accomplishes this. 00 and 01 
indicate new transfer commands. If the old command is not done the new one super- 
sedes it, allowing the CU some 1/0 control. 

The command in GO has priority, and is always carried to completion before the 
command in G1 is considered, When the block transfer is done, the command register 
is made zero, indicating completion. 

The block transfers occur within the heavy outline on the main chart and the 00 block 
transfer path is detailed in Figure 3-13. The first basic decision is whether the com- 
mand is input o r  output. Then a data path is established between the MU and the device 
using appropriate subroutines, signals, and the common L3 bank. The transfer ends 
when the word count reaches zero. Each loop of Figure 3-13 transfers one word. 
Interrupts are accepted between each word transferred. 

3-18 



92816-3 

I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 

DATA TRANSFER 
AND LOGIC I 
CONTROL WORDS 
AND WORKING 
REGISTERS I 
RANDOM INPUTS' 
ADDRESS STORAGE 
(NO. 0 AND NO. 1) I 

L 3  - - L 3  L 3  L 3  

b b - -- I -- ------ I 
- INPUT FROM 4 DEVICES 

c t OUTPUT TO 2 OR MORE DEVICES 

CONTROL DATATO AND FROM CU 

SIGNALS TO AND FROM CU 

DATA TO AND FROM M U  

t CONTROL TO M U  

Figure 3-11. MCB 1/0 Block Diagram. The characters provide a 32-bit data interface 
with external devices. 

3-19 



Section 3 - MCB Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE INPUT/OUTPUT UNIT (Continued) 

0 
7 
2 
m 
m N 

3-2 0 



\ 
\ 
\ 

t 
E 
1 1 -  z 

3-21 



Section 3 - MCB Computer Preliminary Implementation 

FUNCTIONAL DESCRIPTION OF THE CONFIGURATION ASSIGNMENT UNIT 

The Configuration Assignment Unit (CAU) monitors the idle-time counter and the 
diagnostic-time counter, ready to take over the reconfiguration duties if the counters go 

Not all of the characters physically located in the CAU (Figure 3-14) are under control 
of the CAU micromemory. 

Although physically located in the CAU, the cross-communication registers, four of 
the status registers, and three of the counters are under CU control. The remainder 
of the CAU equipment is either uniquely under CAU control, or  controlled jointly with 
one o r  more CU's. 

Although designed to function in a manner identical to the original MCB, the CAU shows 
the most deviation of any unit from the original implementation. The major change is 
that it is now the CAU rather than the CU which compares status and mask registers. 
The remainder of the alterations are minor. 

The CAU utilizes two L3 characters to operate counters and switches, accept discrete 
inputs, and communicate with the CU. 

The microprogram of the CAU is relatively simple, concerned mainly with checking for 
errors  (Figure 3-15). The upper loop of Figures 3-15 is the normal mode, representing 
no errors  detected. If an e r ror  is detected, its nature determines which of two error- 
correcting branches the CAU will enter. 

3-22 



SOME DISCRETE 
OUTPUTS (8 BITS MAX) 

I 

I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I I 

U 

h 

I 
-.-.I----- 

L ALL DISCRETE 

OM CU's (ERROR 
DETECTION) 

32 BIT REGISTERS 

1 SWITCH CONFIG 

- - - - -  

Figure 3-14. MCB Configuration Assignment Unit Block Diagram. The CAU Takes over 
reconfiguration duties if the idle-time counter and diagnostic-time counter go to zero. 

BLANK PAGE FOLLOWS 3-23/3-24 



92816-3 

I c 

RECONFIGURE POWER 
ON 

I 
YES 

REPLY 9 
CONFIGURATION 
FROM CUE 

EFFECT 

CONFIGURATION 

NOTE: 

CUE = EXECUTIVECU 

Figure 3-15. 
relatively simple microprogram mainly concerned with checking for errors.  

Configuration Assignment Unit Microprogram Flow Chart. This is a 

3-25 



Section 3 - MCB Computer Preliminary Implementation 

COMBINED CONTROL AND AFWTHMETIC UNITS IN AN ALTERSJATIVE CONFIGURATION 

The combined Control-Arithmetic Unit is a 32-bit double-logic-unit machine possessing 
fewer characters than the units do separately, less inter-unit wiring, and faster capa- 
bility for complicated arithmetic functions. 

Study of the MCB has included a system in which the remainder of the AU functions are 
absorbed by the CU. This means one unit, illustrated in Figure 3-16, replaces a cu 
and an AU. The resulting system has two I/O, two MU, one CAU, two of the new unit, 
and 6 switches. 

The combined CU and AU (CUAU) is a 32-bit double-logic unit machine. The more 
complicated AU functions require a full-word-length logic organization for maximum 
efficiency. More registers are also required for scratch-pad. The lack of an AU 
interface allows a reduction in the number of L3 characters. The structure of the new 
unit more closely resembles that of the CU, taking on only the word length and the 
G-register capacity of the AU. 

An estimate of the speeds of the CUAU predicts that more complicated functions such 
as multiply and floating points can be done 2 to 3 microseconds faster. Time saved on 
the simpler functions ranges from 0 to 0 . 5  microsecond. 

The more significant change due to this structure is in the hardware count. One CUAU 
contains 45 characters. This replaces a CU with 35 characters and an AU with 21. 
Considering that two P3 (switch) characters are saved, this reduces the total MCB 
character count from 206 to 182. It also reduces the MCB inter-unit wiring up to 
25 percent of its previous value. 

Reliability is an open question. Although it is true that the hardware count goes down, 
this is offset by the fact that redundancy is lost (the CUAU is larger than either the CU 
o r  the AU alone). Also of importance is the elimination of the data transfer between 
the CU and the AU. 

The CUAU microprogram is similar to that of the CU (see page 3-12). The major 
difference is in the program branches previously referred to as "functions processed 
in the AU. Parts of these are now replaced with branches similar to the seven of the 
AU. Also, the CUAU need only be attentive to one interrupt per loop. All subroutines 
and program steps relevant to AU communication are dropped. The increased capability 
is used to maximum efficiency elsewhere in the program. 

3-26 



r - -  - - - - - - - - -  t I t  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CUAU 

LDM 

I P1 I P1 I- C-- 

lii 
MU A N 0  I /O 
INTERFACE 

-1 ---...)--- 

1 1  

1 
32-BIT 
PROCESSOR 

CONTROL I 

m k  - 
LOCAL CLOCK 

- 
I 

WORKING 
REGISTERS 

I II 
3 INDEX REGISTERS 
2 PROGRAM COUNTERS 

AUXILIARY 
PROCESSOR 

I CAU 

Figure 3-16. 
machine which is fast for complicated arithmetic functions. 

CUAU Block Diagram. The combined unit i s  a 32-bit, double-logic-unit 

3-27 



Section 3 - MCB Computer Preliminary Implementation 

EXECUTION RATES FOR THE HUGHES AND EXISTING VERSIONS OF THE MCB 

Design of the MCB using functional characters has resulted in no speed compromise. In 
fact, the Hughes version is faster in execution of most instructions. 

The facing table contains the execution times for the MCB and the existing version of the 
MCB. These times are  based on an assumed micromemory cycle rate of 5 MHz for the 
Hughes-designed machine. Logic runs at 10 MHz. Times are  for the original 5-unit 
machine, not the system with combined CU and AU. 

Note that execution times a re  faster with the character implemented machine for all 
instructions except Branch Direct" and "Decrement and Branch. 

3-28 



TABLE 3-II. MCB EXECUTION TLMES 

Hughes Existing 
Version (psec) MCB (psec) 

A l l  Shifts 
Add Direct (Fixed Point) 
Add (Fixed Point) 
Subtract (Fixed Point) 
Multiply, Most Sig. Half (Fixed Point) 
Multiply, Least Sig. Half (Fixed Point) 
Inclusive OR 
Exclusive OR 
Logical AND 
Floating Point ADD 
Floating Point Add Not Normalized 
Floating Point Subtract 
Floating Point Multiply 
Floating Point Divide 
Store Direct 
Load Direct 
Store 
Load 
Block Transfer Setup 
Block Transfer Per  Word 
Input Output Setup 
Input Output Per Word 
Branch Direct 
Conditional Branch 
Decrement and Branch 
Branch and Link 

W = memory wait time 
A = equalization + normalization time 

For the Hughes version: 

5.8 
4.6 
6.8 
6.8 

20.8 
20.8 

6.2 
6.4 
6.2 
5.4 + A 
5.2 
5.4 + A 

21.8 + A 
21.0 + A 
4.8 + W 
5.3 + w 
7.0 + w 
7.7 + w 
1.2 
3.0 + W 
2.0 
3.8 + w 
3.4 + w 
3.8 + w 
3 . 6 + W  
4.6i-W 

14.5 
11.0 
11.0 
11.0 
29.0 
29.0 
9.5 

10.0 
9.5 

10.5 + A  
11.0 
10.5 + A 
26.5 + h 
51.0 + A 
5.5 + w 
5.5 -k w 
8.5 + w 
8.5 + w 
1.5 
5.0 + w 
4.5 
7.0 + W 
2.0 + w 
4.0 + W 
3.0 + W 
5.0 + W 

equalization = 1.9 psec (AVG) 
normalization = 3.3 psec 

3-29 



Section 3 - MC B Computer Preliminary Implementation 

EVALUATION OF THE FUNCTIONAL CHARACTER DESIGN OF THE MCB 

In terms of LSI circuit types, total pins, and gate-to-pin ratio, the Functional Character 
imolementation is superior to a conventional logic implementation of the MCB. 

Table 3-III shows the comparison data of the functional character implementation versus the 
existing MCB implementation. As may be seen, in all aspects, except gates committed, 
the functional character implementation results in a significant improvement over the 
existing MCB design. The number of gates committed is 35 percent higher for the 
functional character approach. In the LSI area, the tradeoffs will no doubt recognize 
the functional character approach as significantly superior. An increase of 35 percent 
in the number of gates committed is a small price to pay for the reduction in the number 
of chip types and pins. 

For reliability purposes, a small number of pins in the system is far more important 
than a small number of gates, all other factors being equal. As seen in Table 3-111, the 
number of pins required for the MCB implementation is 2 . 6  times the number required 
for the functional character implementation. 

As the column heading shows, the comparison in Table 3-III is made between two LSI 
implementations: one representing the functional character technique, the other repre- 
senting the conventional approach where every MCB card containing X number of IC's 
has been converted to an equivalent IC with the number of card terminals becoming the 
equivalent LSI package pins. 

Design with functional characters saves time. During a six month period, the entire 
MC B was designed, microprogrammed, and remicroprogrammed several times. This 
illustrates the ease and speed of the design process. The improvements gained through 
microprogramming are demonstrated in Tables 3-IV and 3-V. 

Table 3-IV shows the improvements in terms of the number of characters and character 
types required for the two microprogram passes. The characters remained unchanged. 
In this comparison, the codiguration of the MCB was identical with the presently 
implemented IC version. 

Further improvements were gained, as shown in Table 3-V, by restructuring the MCB 
with the appropriate remicroprogramming. The AU and CU were combined into one 
unit, eliminating some logic and the switch between them. This reimplementation was 
feasible with the functional character set due to the more general nature of the charac- 
ters as contrasted with the custom implementation of the existing MCB. 

3-30 



Types 
Cards (LSI Chips) 

Pins Committed 

Gates Committed 

Gates/Pin 

TABLE 3-IV. EFFECTS OF MICRO-PROGRAM IMPROVEMENT ON THE 
FUNCTIONAL CHARACTER IMPLEMENTATION OF THE MCB 

MCB 
Functional Assuming Percent 
Character Each Card Improvement 

Implementation Is An Over MCB High/Low 
(Units) LSI Chip Implementation Ratio 

10 23 +56 2.30 

206 554 +63 2.70 
18,200 47,600 +62 2.62 

47,200 35,000 -35 1.35 

2.6 0.75 +250 3.47 

Unit 

MU 
CAU 
CU 
AU 
Sw itche s 
I/O . 

Computer 
Total System 

First 

11 

39 
38 
25 

8 
17 

22 9 

No. of Characters Used 

Subsequent 

7 

38 
35 
21 

8 

17 

206 

Functional Character 
Implementation of the 

Existing Configuration P arame te r 
No. of Characters 229 

Fixed Point Direct Add 9.9 
Fixed Point Add 11.6 
Fixed Point Subtract 11.6 
Inclusive or  11.5 
Exclusive o r  11.5 
Logical and 11.5 

No. of Character Types 10 

No. of Character Types Used 

Same Except 
AU and CU 

Were  Combined 
182 

10 
4.2 us 
6.4 
6.4 
6.2 
6.4 
6.2 

MICRO 
First 

6 
7 

9 
7 
1 

6 

10 

ROGRAM PASS 
Subsequent 

5 
7 

9 
7 
1 

6 

10 



SECTIDN 4 
CHARACTER SUB-PARTITIONING 

Alternative Schemes for Sub-partitioning . . . , . . . . . . . . , . . . . . . . . . . . . . . 
Reliability Considerations in Character Partitioning . . . , . . . , , . . . . . , . . . . . 4-0 

4-2 



Section 4 - Character Sub-partitioning 

ALTERNATIVE SCHEMES FOR SUB-PARTITIONING 

Alternative schemes for sub-partitioning the characters in accordance with NASA guide- 
lines has yielded partitions of 150 gates o r  less but with degraded gate-to-pin ratios. 

Some functional characters require about 350 gates per  function. The natural tendency 
would be to implement one character per chip. However, this is not an acceptable solu- 
tion for  TTL circuits in view of the state of the art and the following NASA-desired de- 
s ign guidelines. 

Gates per chip 
Circuit yield 
Conductor spacing 
Conductor width 
Metalization layers 
Circuit type - Bipolar TTL 

In view of these guidelines, the functional characters were sub-partitioned as shown in 
the table. 

- About 100, no more than 150 
- 100% without yield enhancement 
- 0.1 mil minimum 
- Current density not to exceed 105 amps/cm2 
- No more than 2 

The intent of the table is not to select the optimal subpartition, but to enumerate some 
logical choices. The optimal choice will depend on assigned weightings for gates and 
pins per chip, as well as the other design constraints mentioned earlier. The table thus 
shows each character and the characters' composition, using one or more custom o r  
commercially available LSI/MSI chips. More than one subpartitioned chip is required to 
implement the functional character. The number of chips and chip types required is 
given in the second column as a descriptor and also in the sixth and seventh columns 
under %omposite. '' The columns under the "composite" heading state the total number 
of items required to implement one functional character. The columns under the first  
and second chip heading contain similar information on a per  chip basis. 

A comparison the subpartitions with the character partitions shows the following changes: 

1. The number of chip types is at least 20% greater than the number of characters; 
thus, a small penalty is paid in terms of part number problems. 

2. The number of gates per chip dropped (approximately by a factor of 0.5) and the num- 
ber of pins remained about equal, resulting in an increased number of pins in the sys- 
tem by a factor of about 2. 

3. The total number of gates per function increased an insignificant amount. 

4-0 



0 
rl 

m 
d 

m a - 
t- 
m 4 

N 
W 

m * rl 

m 
B 
9 

* 
N 
N 

k 

W 
M 

B 
.* 

$ s 
4- 1 



Section 4 - Character Sub-partitioning 

RE LIABILITY CONSIDERATIONS IN CHARACTER PARTITIONING 

The achievement of maximum reliability depends on minimizing operating temperature 
and total number of pins in the system. Subpartitioning the characters will tend to lower 
reliability because of increased pin count. 

Reliability considerations require a minimum number of bonds (pins) and a lowest junc- 
tion temperature practicable. Temperature is a very important consideration since the 
failure rate of the device increases about 1.8 times per 25OC temperature rise. Although 
several other factors affect reliability, they are either less influential on the operational 
failure rate, o r  on a relative basis do not affect the tradeoff. For example, the quality 
of the package's hermetic seal may be an important factor in development and acceptance 
testing. But once a good seal has been established, it will remain s o d .  Furthermore, 
the difficulty of making a good seal is proportionate to the lengths of seal interface. The 
latter in turn is a function of the number of pins per package, and the dependence of re- 
liability on number of pins again appears. 

Within specific cooling capacity, circuit technology, and packaging technology, two factors 
affect the device's temperature: 

a. The number of gates per system 
b. The number of IC package pins per system. 

The number of pins affects device temperature because LSI circuits are generally built 
with tailored lower power internal gates for driving low capacitance and limited fanout 
within the chip's boundaries and higher power gates at the chip output in order to over- 
come the input output capacitance and chip fanout. 

For example, in the natural and subpartitioned functional characters the number of gates 
per system remains approximately constant. However, the number of pins doubled for 
the subpartitioned case. In TTL circuits the power dissipation of the subpartitioned im- 
plementation is expected to increase. Specifically, the dissipation is increased by about 
15% since the total number of functional character pins increases by more than a factor 
of two in the subpartitional case. The increased number of pins affects total power since 
each pin requires at least one external gate, and each external gate dissipates at least 
2p units of power. Typically, 1/3 of the pins are used for output; the others are used for 
inputs, power, and ground. Thus, the total power is given by the product of the power 
per gate and the total number of gates plus one-third the number of pins, P - p (M +g). 
This calculation is made for the three cases of interest in the facing table. 

Even though the number of gates is 35% greater for the functional character implementa- 
tion, the power dissipation is only about 5% greater than that of the conventionally- 
implemented MCB were it implemented with LSI's representing present MCB cards. 
This 5% difference will disappear in practice. The actual power difference relative to 
the present IC implementation would be in favor of the functional implementation. 

In addition to the number of pins causing increased power dissipation, which may be 
equated with increased failure rates, there are, other reliability and cost penalties as- 
sociated with an increased number of pins. These all result  from bonding. Each pin 
requires two internal bonds (one to the metalization, the other to the pin). Each pin must 
in turn be fastened to some external holder (card, connector, wire, etc.). 

4-2 



Every one of these junctions is a potential failure and a fabrication cost factor. Thus, 
the number of pins as a contributor to increased system failure rate manifests itself in 
several ways. Every effort must be made to keep the pin count low. 

Relative Power Dissipation for  the MCB in Three Implementations: Functional 
Character, Subpartitioned Functional Character, and Conventional Logic: Sub- 
partitioning the Characters Increases Total Power by About 8 %. 

N Basic Formula: P - p (M + 5 )  

P = Total Power (watts) 
p - power per internal gate 
M= total number of gates 
N - total number of pins 

Case 
Relative 

M N P Power 
Functional Character 47,200 18,200 5 3 , 3 0 0 ~  1.05 

Subpartitioned Characters 47,200 31,500 57 ,700~  1.13 

Conventional Logic 35,000 47,600 50 ,900~  1.00 

BLANK PAGE FOLLOWS 4-3/4-4 



SECTION 5 
CELLULAR ARRAY MECHANIZATION 

Cellular Logic as  a Possible Means of Character Implementation . . . . . . . . . . . .  
The Application of Cellular Logic To Functional Character Mechanization . . . . . .  
Characteristics of Cutpoint Cellular Arrays ......................... 5-4 
Characteristics of Cobweb Cellular Arrays .......................... 5-6 
Comparison of Cellular and Master Slice Mechanizations ................. 

5-0 
5-2 

5-8 
5-12 References ................................................ 



Section 5 - Cellular Array Mechanization 

CELLULAR LOGIC AS A POSSIBLE MEANS OF CHARACTER IMPLEMENTATION 

Although the character set could be implemented with cellular logic, the total gate usage 
would be prohibitive. 

Size, power, and reliability constraints demand that the modular computer be implement- 
ed with LSI circuits, but the question of how to achieve an LSI implementation remains. 
To date, several approaches to logic partitioning for LSI have been reported, ranging 
from the conventional approach, where partitioning is done after the logical equations 
have been written, to the flcellular" type approach, where a group of logical gates are 
structured to be programmed on the cell to form specific functions. 

The conventional approach includes both manual and automatic partitioning. This approach 
appears undersirable for the modular computer implementation because the design process 
tends to be lengthened and the number of LSI chip types tends to increase, particularly as 
applications are broadened outside of the computer proper. A small number of LSI chip 
types is an important factor towards achieving the very tight quality and process controls 
required for the realization of very low component failure rates. The latter is a must 
for long time mission reliability. 

Cellular logic has been studied for its potential application to the functional characters. 

In the cellular approach, the cell design is such that all combinations of n variables must 
be implementable in order for the cell to be of universal use. Proofs have been developed 
showing that such a cell can indeed form all functions of n variables. The cell, although 
a universal device, still requires the process of writing logic and determining which paths 
in the cell structure should be connected o r  cut (physically o r  logically) in order for the 
universal cell to assume the unique logic posture specified by the logic designer. 

The critical deficiency of cellular logic in implementing the characters is that the process 
of achieving a prespecified function requires disabling of a large percentage of the inter- 
nal gates. The characters have predetermined logic interconnects but do not require 
restructuring of interconnections in order to achieve the logical design objective. The 
design process with functional characters is analogous to programming using a compiler. 
The characters are analogous to compiler statements. The designer specifies inputs , 
outputs, and control for each character's micro-operation. Micro-programming is used 
as the control structure. Three of the 10  characters comprise the micro-program store. 
Perhaps designing with pre-specified large functions without the utilization of Boolean 
equations marks the greatest departure and contribution of the functional characters. 

The following topics describe the survey of cellular logic which was accomplished. The 
major areas of investigation are shown in the table. 

5-0 



AREAS OF INVESTIGATION OF CELLULAR LOGIC. THESE ARE 
DISCUSSED IN THE FOLLOWING TOPICS 

0 Cellular Array Versus Master Slice 

0 Cellular Cascades 

0 Cutpoint Cellular Arrays 

0 Cobweb Cellular Arrays 

0 Cellular Mechanizations 

5-1 



Section 5 - Cellular Array Mechanization 

THE APPUCATION OF CELLULAR LOGIC TO FUNCTIONAL CHARACTER 
MECHANIZATION 

Cellular logic is a functional character mechanization being considered to reduce the 
interconnection complexities of large numbers of logic gates. The cellular casade is 
first described as the forerunner of cellular arrays. 

The interconnection of from 200 to 500 logic gates on a single semiconductor wafer in 
general requires a fairly complex wiring interconnection pattern. In order to reduce the 
interconnection complexity, some of the connections may be made among the gates to 
create a basic cell which absorbs some of the next level wiring connections. 

One such cell was proposed by Minnick. In its initial form, it was called a cutpoint cell. 
Its design is rooted in the theoretical decomposition of switching functions. Its varieties 
and off-shoots are described along with other cellular array types in reference 1. An 
important variety of the cutpoint cell is the cobweb array cell. It was invented to over- 
come some interconnection deficiencies associated with the cutpoint cellular array. 

Cellular Array Vs.  Master Slice - This section assesses the applicability of cutpoint and 
cobweb cellular arrays to the mechanization of functional characters, A significant part 
of a typical functional character is mechanized using cellular logic. This mechanization 
is compared to a master slice mechanization. The master slice mechanization is one 
which is finding acceptance in the semiconductor industry today. 

Cellular Cascades - As a preliminary to understanding cutpoint and cobweb cellular 
arrays,  their forerunner, the cellular cascade is first described. The cellular cascades 
studied by Maitra (Ref. 2), Sklansky (Ref. 3), and Levy, Winder, and Mott (Ref. 4), are 
unilateral, one-dimensional, chains of two-input/one-output binary cells. The three 
approaches accomplish essentially the same purpose by alternate synthesis methods. 
Maitra's method is one of mapping. Sklansky's method uses matrices. The method of 
Levy, Winder, and Mott, is algebraic. In light of more recent developments in cellular 
logic, this type of logic realization might better be classified as a single rail cellular 
cascade. Its diagram is shown in the figure. Each of the binary functions F 
may be independently set to a function of its two input variables. Maitra, ink& original 
description of the single rail cellular cascade, showed that the set of functions Q (XO, 
XI, X2, X3, . . . , Xn) is smaller than the set of n-variable Boolean functions. 

Single rail cellular cascades with redundant inputs have been studied by Minnick (Ref. 7) 
and Stone, and Korenjak (Ref. 5) These redundant single rail cellular cascades result 
in a larger class of realizable functions, but for  all m53,  the entire set of m-variable 
functions is still not producible. 

Single rail cobweb and cutpoint cellular arrays are described in the following topics. 

Fa, Fn, 

5-2 



Figure 5-1. A Single Rail Cellular Cascade. 
The set of functions Q is smaller than the set 
of n-variable Boolean functions. 

5-3 



Section 5 - Cellular Array Mechanization 

CHARACTERISTICS OF CUTPOINT CELLULAR ARRAYS 

A single cutpoint cellular array can mechanize more than a single function. By rotating 
the bottom column of an array 900, arbitrary functions of variables can be formed as the 
sum of products. 

Minnick (Refs. 6 and 7) has devised single rail cellular arrays which he calls cutpoint 
cellular arrays. The binary cells which make up these arrays are called cutpoint cells 
because of Minnick's suggested method of cutting prewired connections to form the bi- 
nary cell functions. The single rail cellular array is an extension to two dimensions of 
the one-dimensional cascade of Maitra. A single rail cellular array (cutpoint array) is 
shown in Figure 5-3. The horizontal inputs to each cell in the same row are identical. 
The indices in each cell denote the function to which the cell is set. The cell may be set 
to one of eight Boolean functions of two variables or  set to function as an R-S flip-chip 
as shown in Figure 5-2. 

A s  indicated in Figure 5-3, a single array can mechanize more than a single function. 
In the example, 

F2 = X  X 2 4  

F3 = X  X 3 4  

Minnick has shown (Refs. 6 and 7) that arbitrary functions of variables can be formed 
as the sum of products (product of sums). This method requires one column of cells 
for each product (sum) as well as a column which is rotated 90° to form the bottom row 
of the array to %ollect7' the products (sums). An example of a three variable function 
which forms the sum of products: 

F =X;X3 +<X3 +XlX2Xi 

is given in Figure 5-4. Intermediate Boolean Variables are shown at the output of each 
cell. 

One set of rules (not the only one) for mechanizing combinational logic functions by 
%ollecting" products is as follows: 

1) Place independent variables along the left hand inputs. 
2) Label each upper input to the rotated bottom row cells with one of the products. 
3) Place a rrlrr in every cell for which the row variable is not an implicant in the product. 
4) Place a "6" in every unfilled row 1 cell. 
5) Place a "4" in each cell of the rotated bottom row. 
6) Place a "0" in the right hand input of the bottom row. 
7) Enter a "2", 1131r, 1f471, or 1f5t1 in the remianing cells to satisfy each product term 

working from the bottom up. 
8) The upper inputs to the top row cells must be either rrl" o r  "0". 

An analogous set of rules can be written for collecting sums. 

5-4 



92602- 

z 

92602- 

0 

Figure 5-2. Functions for Cktpoint 
Cells. Cutpoint cells may either 
be set to one of 8 Boolean functions 
of 2 variables o r  may function as an 
R-S flip chip. 

Figure 5-3. Example of a Cutpoint 
Array, This single rail cellular 
array allows for the mechaniza- 
tion of multiple functions. 

926024 

Figure 5-4. Exampie of a Three Vari- 
able Function which Forms the Sum 
of Products. One column is required 
for  each product and one row to col- 
lect the products. 

5- 5 



Section 5 - Cellular Array Mechanization 

CHARACTERISTICS OF COBWEB CELLULAR ARRAYS 

Although the functions implemented by a cobweb are the same as for a cutpoint array, a 
cobweb array provides a gain in efficiency because of fewer cells. 

The cobweb cellular array is a single rail cellular array invented by Minnick (Ref. 8) 
to overcome four problems with cutpoint arrays: 

0 Inefficiency in the number of required cells. 
0 Excessive requirement for jumper connections from edge-output points to edge-input 

0 Insufficient number of edge connections to the array. 
0 The lack of cell isolation during early production so that step-and-repeat testing could 

points of the same array. 

be used to identify faulty cells. 

The functions implemented by each cobweb cell remain the same as for the cutpoint cell. 
However, the interconnection complexity of the cells is increased by permitting inputs 
to each cell from two of five places: (1) the cell above, (2) the cell to the right, (3) the 
cell a knight's move above and to the right, (4) a horizontal feed-through bus, and (5) 
a vertical feed-through bus. The cell is shown in Figure 5-5. 

In order to distinguish cobweb cell inputs, a circle is used for the x input, while a tri- 
angle is used for the y input. Jumper connections may be made to bypass a cell. A 
jumpered cell is indicated by placing a J in the cell and circling the jumpered connections. 
If more than one pair of connections is jumpered, a triangle is used to indicate the 
second pair of jumpered connections. A comparison of Figures 5-6 and 5-7 indicates 
the relative gain in efficiency to be made over a cutpoint array. The cobweb array uses 
30 instead of 49 cells for the three-bit parallel adder. Another improvement is the carry 
chain which is reduced from 8 inverters to 6 inverters (assuming Minnick's DTL 
mechanization). 

92602-5 
I 

Figure 5-5. The Cell for Cobweb Cellular 
Arrays. Four major problems of the 
cutpoint array are overcome by the in- 
creased connectability of the cobweb cell. 

5-6 



92816-3 

, I  1 
r 

c3 - 4- 2 -  2 -  2- 2 -  
- - 

I' 4 1  4 41 , - 
s, - I -  I -  6 -  2- 2- 

- 

Figure 5-6. Cutpoint Array Realization 
92816-3 

Figure 5-7. Cobweb Array Realization. Fewer cells are required to implement the 
same function. 

5-7 



Section 5 - Cellular Array Mechanization 

COMPARISON OF CELLULAR AND MASTER SLICE MECHANIZATIONS 

In terms of propagation delays and numbers of cells, cellular arrays offer no advantages 
over the commonly used master slice mechaniiation. Further study of Short's approach 
for two-rail cellular cascades is suggested. 

Methodological Approach - The P2 functional character was chosen to be implemented 
with cellular logic. A preliminary implementation of the P2 functional character re- 
quires two types of flip-flops. The first is a trigger type, T, with asynchronous set- 
reset inputs and a clock input. The second flip-flop is a delay type, D. For the sake of 
comparing a cellular versus a master slice mechanization, it is assumed that either 
of these flip-flops is available when index thirteen is specified in the cellular mechan- 
ization. The comparison then reduces to one for combinational logic arrays. Since each 
cell in the cellular array is roughly equivalent in complexity to a gate in a typical T2L 
master slice array, counting cells in a cellular array and gates in the master slice 
array gives the means for assessing the relative efficiency of the two mechanizations. 
This also gives an indication of the relative power dissipations of the two mechanizations. 
The number of propagation delays associated with the combinational array is a second 
factor to be considered. 

Logic for the Chosen Functional Character - Typical of the logic for the P2 character 
is the count logic for the up-down counter. In the following Boolean equations. G T  is 
the trigger input to the nth bit position flip-flop in the counter. Y is the last carry out of 
the counter. This set of equations is mechanized in three ways: First, 7 is mechanized 
with cutpoint cells, then the entire set of equations is mechanized with cobweb cells, 
and finally, the array is mechanized with NAND gates from a master slice. 

m 

rn 

Cellular Mechanizations - A cutpoint cellular mechanization for the last  carry output 
y, is shown in Figure 5-8 on the following pages. The array was formed using the set of 
rules given for forming the sum of products. Eleven cells are required with seven cell 
delays. A NAND gate mechanization where 5 input gates were available would require 
13 gates and 4 gates delays. 

Master Slice Mechanization - Typically, master slice arrays contain an assortment of 
NAND gates and flip-flops such that arbitrary functions may be economically mechan- 
ized. In the mechanization shown in Figure 5-10, it is assumed that 5, 3, and 1 input 
gates are available in the ratio of 2:3:2. At least one LSI master slice is available in 
approximately these ratios. The array then requires 20 gates with four gate delays. 

5 -8 



Results of Comparison - A s  might be expected, the number of delays associated with 
the cellular versions is generally greater than for the master slice version. This arises 
because the cellular arrays are based on the decomposition of Boolean functions a single 
variable at a time. 

mo-rai l  cellular cascades as described by Short (Ref. 9) may give some relief in the 
length of propagation chains, but the cell complexity increases significantly beyond that 
of a single NAND gate. 

It appears that cutpoint and cobweb cellular arrays give no significant advantages over 
a master slice array with respect to numbers of cells and propagation delay. The cob- 
web cell requires two layers of interconnect which is no better than the master slice. 
In order to reduce propagation delays, it seems worthwhile to pursue Short's approach 
for two-rail cellular cascades where a subset of all possible 3 variable cellular functions 
is used to compose arrays of considerate flexibility. 

5 -9 



Section 5 - Cellular Array Mechanization 

COMPARISON OF CELLULAR AND MASTER SLICE MECHANIZATION (Continued) 

Figure 5-8. Cutpoint Mechanization for the Last 
Carry Output (9') Logic. This mechanization re- 
quires seven gate delays, whereas a NAND gate 
mechanization requires only four delays. 

5-10 



Figure 5-9. Cobweb Cell Array Mechanization for 4 Up-Down Counter Equations of P 2  
Character. Seven cell delays are required. 

92816-2 

Figure 5-10. Master Slice Mechanization for 4 Up-Down Counter Equations of P2 Charac- 
ter. Four gate delays are required. 

5-11 



Section 5 - Cellular Array Mechanization 

REFERENCES 

Minnick, R. C. A Survey of Microcellular Research, Journal of the Association for 
Computing Machinery, Vol. 14, No. 2, (April 1967), 203-241. 

Maitra, K. K. Cascaded switching networks of two-input flexible cells. IRE Trans. 
EC-11,2 (April 1962), 136-143. 

Sklansky, J. General Synthesis of tributary switching networks. IEEE Trans. 
EC-12, 5 (Oct. 1963), 464-469. 

Levy, S. Winder, R. O., and Mott, T. H . ,  Jr. A note on tributary switching net- 
works. IEEE Trans. EC-13, 21 (April 1964) 148-151 (Correspondence). 

Stone, H. S. and Korenjak, A. J. Canonical form and synthesis of cellular cascades. 
IEEE Trans. EC-14, 6 (Dec. 1965), 852-862. 

Minnick, R. C. Cutpoint cellular logic. IEEE Trans. EC-13, 6 (Dec. 1964), 685-698. 

Minnick, R. C. Application of cellular logic to the design of monolithic digital sys- 
tems. Proc. Symp. on Microelectronics and Large Systems, Spartan Books, 
Washington, D. C., 1965 

Minnick, R. C. Cobweb cellular arrays. Proc. AFIPS 1965 Fall Comput. Conf., 
Vol. 27, Pt. 1, pp. 327-341. 

Short, R. A. Two-rail cellular cascades. Proc. AFIPS 1965 Fall Joint Comput. 
Cod., Vol. 27, Pt. 1, pp. 355-369. - 

5-12 



Section 6 

Bibliography.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-0 



Section 6 - Bibliography 

The following comprise a basic set of reference material in the m 
study. Areas encompassed a r e  aerospace computer charaderist i  
on computer architecture, cellular logic, LSI applications, and earlier work in 
functional partitioning. 

REFERENCES 

0 

0 

e 

0 

0 

0 

e 

e 

0 

0 

0 

e 

Avizienis, A., I I D e s i g n  of Fault-Tolerant Computers, 
Proceedings, Volume 31, Fall Joint Computer Conference, 1967. 

Baechler, D. O., I'Trends in Aerospace Digital Computer Design, 
Group News, Volume 2, No. 7, Pages 18-32, January 1969. 

Barnes, G. H., Brown, R. M.,  Kato, M., Kuck, D. J., Slotnick, D. L., and 
Stokes, R. A., "The ILLIAC IV Computer, If IEEE Transaction on Computers, 
Volume C-17, Number 8, August 1968. 

AFIPS Conference 

Computer 

Beelitz, H. R., Levy, S. Y., Linhardt, R. J., Miller, H. S., "System 
Architecture for Large-Scale Integration, I t  AFIPS Conference Proceedings, 
Volume 31, Fall Joint Computer Conference 1967. 

Bersoff, E. H. and Hope, and F. Tung, IEEE Transactions on Aerospace and 
Electronic Systems, to be published. 

Bower, R. W. and Dill, H. G. , llInsulated Gate Field-Effect Transistors 
Fabricated Using the Gate a s  a Source Drain Mask, 
Meeting, Washington, October 1966. 

Bower, R. W., Dill, H. G., Aubuchon, K. G., and Tomps, S. A. "Characterization 
of MOS FETs formed by Gate Masked Ion Implantation, lf given at the International 
Electron Devices Meeting, Washington, D. C., October 1967. 

Cserhalmi, N.,  Lowenschuss, O., Scheff, B., "Efficient Partitioning for the 
Batch - Fabricated Fourth Generation Computerf1, Proceedings of the Fall Joint 
Computer Conference, 1968. 

International Electron Devices 

Dickinson, M. M., Jackson, J. B., Randa, G. C., "Saturn V Launch Vehicle 
Digital Computer and Data Adapter, 
Fall JCC 1964. 

AFIPS Conference Proceedings 26, 501-516, 

Dill, H. G., Wffset Gate Field Effect Transistors with High Drain Breakdown 
Potential and Low Miller Feedback Capacitance, 
Devices, October 1968. 

IEEE Transaction on Electron 

"A Study of Jupiter Fly-by-Missions, 
pp. 3-159 to 3-202, May 17, 1966. 

General Dynamics Rept. FZM-4625, 

ings, R. C., Wesign and Fabrication of a General Purpose Airborne 
mputer Using LSI Arrays, "Digest - 1968 IEEE Computer Group Conference, 

June 1968. 

6-0 



0 Levy, S. Winder, R. O., and Mott, T. H., Jr. A note on tributary switchingnet- 
works. IEEE Trans. EC-13, 21 (April 1964) 148-151 (Correspondence). 

0 Maitra, K. K. Cascaded switching networks of two-input flexible cells. IRE Trans. 
EC-11, 2 (April 1962), 136-143. 

0 Maurer, H. E. and Ricci, R. C., llHorizons in Guidance Computer Component 
Technology, IEEE Transactions on Computers, Volume C-17, No. 7, July 1968. 

0 Minnick, R. C. Application. of cellular logic to the design of monolithic digital 
systems. Proc. Symp. on Microelectronics and Large Systems, Spartan Books, 
Washington, D. C., 1965. 

0 Minnick, R. C. A Survey of Microcellular Research, Journal of the Association 
for Computing Machinery, Vol. 14, No. 2, (April 1967), 203-241. 

0 Minnick, R. C. Cobweb cellular arrays. Proc. AFIPS 1965 Fall Comput. Conf., 
V01.27, Pt. 1, pp. 327-341. 

0 Minnick, R. C. Cutpoint cellular logic. IEEE Trans. EC-13, 6 (Dec. 1964, 
685-698. 

0 Pariser, J. J. , Wonnection Considerations with a View Toward Batch Fabrication", 
Proceedings of the National Symposium of the Impact of Batch Fabrication on 
Future Computers, p. 213, April 1965. 

0 Pariser, J. J., Erwin, F. D., McKevitt, J. F., Burke, J. A., Disparte, C. P., 
and Schardin, C. H., "Research in the Effective Implementation of Guidance 
Computers with Large Scale Arrays, f t  First Interim Report, Submitted to NASA ERC, 
October 1968. 

0 Segal, J., '%peed/Power Chart for Digital IC's, l1 The Electronic Engineer, 
June 1968. 

0 Short, R. A. Two-rail cellular cascades. Proc. AFIPS 1965 Fall Joint Comput. 
-* C o d  ' VO~.  27, Pt. 1, pp. 355-369. 

0 Sklansky, J. General Synthesis of tributary switching networks. IEEE Trans. 

0 Stone, H. S. and Korenjak, A. J. Canonical form and synthesis of cellular cascades. 
IEEE Trans. EC-14, 6 (Dec. 1965), 852-862. 

0 Van Hoode, G. R., TRW, "Evaluation of Experience with Microelectronic 
Integrated Circuits, 

EC-12, !j (Oct. 1963), 464-469. 

No. 9990-6183-ROb0, May 1967. 

BLANK PAGE FOLLOWS 6-1/6-2 



APPENDIX 

RESEARCH IN THE EFFECTIVE IMPLEMENTATION OF GUIDANCE 
COMPUTERS WITH LARGE SCALE INTEGRATION 

1968 Midterm Report prepared by Hughes-Fullerton presented to NASA ERC 



Appendix - Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

The following pages contain reductions of the charts which were used in the verbal Mid- 
term Report given by Hughes at NASA ERC in 1968. Their content summarizes much of 
the material of this report. The bulk of these are self-explanatory and are not further 
annotated here. However, a few necessary added comments follow. 

Figure A-7 illustrates the basic motivation fo r  this study. Till now, the most common 
design technique has been f i r s t  to design the logic for the system and then to partition 
accordingly. The character set was derived in a different manner. A study of computer 
structures revealed that in general they were organized as shown in Figure A-7. Having 
broken computer structures into these functional blocks, specific characters were de- 
signed to accomplish functions shown. 

This approach is particularly relevant to upcoming LSI technology. With the complexity 
of functions possible on a single IS1 chip, it is ppobable that current design techniques 
will create a large number of highly specialized and expensive chips. The functional 
character approach represents a solution to this problem, offering a small number of 
generally applicable circuits. 

Figure A-21 shows the structure of the Hughes-designed MCB. There a r e  two numbers 
associated with each unit. The first is the total number of characters needed to imple- 
ment the unit. The second is the number of different character types in the unit. 

Figure A-27 illustrates the difference in the I/O procedure of the first and the present 
Hughes-designed MCB. The original design involved the CU to the extent of making I/O 
functions a three-unit process, The CU was used as a command generator and timing 
base. In the present version these functions are taken over by the I/O unit. The CU is 
used only to initialize the I/O unit. Also, the I/O is now provided with a 32-bit data 
interface. 

Figure A-34 is based on semiconductor manufacturer's projections, The lower "available 
on market" scale is Hughes' projection of the actual avilability of the hardware. It is 
our opinion that LSI devices of 200 gates o r  more are still forseeable by the 1970-1971 
period, 

Conventional MOS is compared to bipolar TTL in Figure A-35. MOS offers lower power 
dissipation, greater circuit densiw, and at least equal MTBF. The usual fabrication of 
MOS requires two masks, one for the source and drain and one for the gate. Manufac- 
turing tolerances require a certain amount of gate overlap, which causes significant 
parasitic capacitance. Consequently conventional MOS is relatively slower than bipolar 
TTL. 

Figure A-37 summarizes some reliability data on conventional MOS. The important 
point is that MOS failures are not uniformly distributed in time, A high percentage of 
failures occur in the f i r s t  150 hours. Therefore MOS has a high potential reliability if 
a ffburn-inlf time is allowed to eliminate defective circuits, 

MOS transistors can be implemented by ion implantation. The source and drain can be 
formed entirely by implantation, or can be diffused beyond a certain gap around the 
gate which is then filled in by implantation. Implantation is usually done through the 
gate oxide layer in order to maintain planar device properties, Since the metal gate is 
no longer present to protect the ga t ea ra in  region from surface impurities, an Si3N4 
film is added. 

A -1 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

The advantage of the IMOS (over regular MOS) most pertinent to this study is higher 
speed due to reduced gate capacitance. Other advantages are summarized in Figure 
A -38. 

Another advantage of IMOS is illustrated in Figure A-39. If the implementation of the 
characters is done with conventional circuits, one is forced to accept one of the indi- 
cated points on the speed-power curve. However, a customed-designed IMOS approach 
allows the designer to pick any point within the shaded region. 

Figure A 4 0  presents the improvements made in the second functional character imple- 
mentation of the modular computer and a comparison of the improved parameters with 
the modular computer breadboard. 

A -2 



SUMMARY 

DESIGN WITH 
FUNCTION CHARACTERS 

I MCB IMPLEMENTATION I W I T H  10 F . C . ' S  

I FUTURE WORK I 

0 DEVELOP A SET OF LOGICAL B U I L D I N G  BLOCKS - 
FUNCTIONAL CHARACTERS S U F F I C I E N T  TO IMPLEMENT 
SPACE BORN D I G I T A L  EQUIPMENTS, (COMPUTERS 
DDA, A/D, D/A, E T C . ) .  

STATUS 

I SUFFICIENCY HAS BEEN DEMONSTRATED AND FIRST 
IMPROVEMENT CYCLE COMPLETED. 

0 ON SCHEDULE. 

Figure A-2. 

A-3 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

0 THE NASA ERC MODULAR COMPUTER 
BREADBOARD 

a A DDA 

0 A TO D AND D TO A 

0 P A R A L L E L / S E R I A L  CONVERTER 

I W I - 4  
/ 

Figure A-3. 

/ \ 
c------------~ 

L________----. 
-*s MI". r-. 

: HUGHES S U F F I C I E N C Y  DEMONSTRATED THROUGH TEST 
,y,,,ll .,,. APPL I CAT I ONS 

T I M E  b w __ 8 CHARACTERS 

ti 
U 

Ir 
I 

I MPLE- 

OTHER 

I 
Figure A-4. 

A-4 



DES I GN 

W I T H  

FUNCTIONAL 

CHARACTERS 

Figure A-5. 

CHARACTER RELATES TO L O G I C  DESIGN 

PROGRAMM 

IYII-1 

AS 

NG LANGUAGES DO TO MACH NE LANGUAGE 

L 4 

Figure A-6. 

A-5 



Appendix - Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

P 3  
L3 

P1 

G 1  

STORAGE 

L1 
BOOLEAN L O G  I C L2 

M1 
M2 
MM 
d T Y P I C A L  COMPUTER 

* N i  BITS W I D E  

Figure A-7. 

I NC-G1 

t i  

OPERAT I ON 
ON DATA ti+n ( 

Figure A-8. 

A-6 



-------------- 
.------------a ........."* u, .-. 
,,.,#1"1.. .~*."". 
; HUGHES ; BUS NOTAT I O N  

INPUT OUTPUT BUS FLOW I S  REFERENCED W I T H  
RESPECT TO L O G I C  CHARACTERS 

CONTROL - 

I NPUT 
3us 

W451.11 
/ 

Figure A-9. 

15UI-ll 

Figure A-10. 

A-7 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

HUGHES 0-1 GENERAL REQISTER 

_....., .... ".11..."..... 
rn.OY.D .... ."...D"I 

DUAL BUS STRUCTURE DOUBLES THRUPUT 

OUTPUT 
8 BITS SELECTION 

SOURCE1 I 
DESTINATION I 1  SOURCE I 1  

92602.43 

Figure A-11. 

r 

BUS IINWTJ ----- 

MICRO- 
MEMORY 
CONTROL 

92602-33 

Figure A-12. 

A-8 



HUGHE$ L2 - ARITHMETIC CHARACTER 

..,. ",...-"... "*.\. 
a. D".v.....".*.eY. 

9260244 
\ A 

Figure A-13. 

' C  I 
I 
I 
I 
I 
I 

HUGHES M1- WICROMEMORY SEQUENCER CHARACTER PROVIDES RANDOM ADDRESSING 

., ....cO"..\l 
D.~".O...ll". O.0". 

-------------- 
OTHER CHARACTERS 

I INCREMENTER 

I #  I ,  
I I  MMC 1 1  

I .t I I  I 

UNCONDITIONAL JUMP GATES 

MICRO- 
MEMORY 
ARRAY 

M 2  

9210245 
\ A 

Figure A-14. 

A-9 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

r------------~ 

L________----a 
ŷw..I""I '_*I 
l v . . l l l n *  L..ID.*. W I TH S I MPL I C I TY 

w 

HuOnEs M2-MICROMEMORY INSTRUCTION CHARACTER 

SOURCE OPERATOR 

.....,....... ,..,,"".\. 
LI.O".D...,.".*.D". 

DEST I NAT ION 

OTHER CHARACTERS 01. M1 

1 
I 
I 
I 

J 

--e ---- ---- 

ST' MICROMEMORV 
WORK REGISTER 1 M1 

MICRO-INSTRUCTION 
REGIBTER ---- 

CONTROL BYTES 

L 9260246 

Figure A-15. 

UI11-IS 
/ 

Figure A-16. 

A-10 



nuenls PZ SEQUENCER CHARACTER 

rU..,...... **.\. .. ~Y.m.....".a.D". 

HUBHES PI-SWITCH CHARACTER CONCURRENTLY CONNECTS ANY OF 3 INPUTS TO ANY OF 3 OUTPUTS ."="... .,..., <m ..\. 
~.O""O.I.....LI.*V. 

\ 92602-47 

NEXT 
STAGE 
(P2) 

92602-34 
L / 

Figure A-17. 

3 INPUT 
CHANNELS 
f16 (llTS 
N P I C A L I  

CONTROL (L3 of CAW 

CONTROL STORAGE 

Figure A-18. 

A-11 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

MCB IMPLEMENTATION 
WITH TEN 

FUNCTIONAL CHARACTERS 

Figure A-19. 

A-12 



HUaHLQ MCB IMPLEMENTED WITH 10 FUNCTIONAL CHARACTERS 

.""*....".".11 I,.\. .. OYIO....."...~". 

92602-35 

Figure A-21. 

.._____-______.l 

L____________a 
""M* * n Y r  <-*. 
.YLL1".** C.,..O.*,. 

: HUGHES : CAU - CONFl GURATION ASS IGNMENT UNIT 
INTRA MCB INIERFACEJt I D  I SCRETES 

0 CONFIGURATION 
STATUS & MASKS cu 

cu 
0 REAL TIME CLOCKS 
. & COUNTERS 

7 

#2 

#2  

cu #l= 
0 INTER-CU COMMUNICATION 

0 POWER CONTROL 
0 I/O CONFIGURATION STATUS 

0 DISCRETE OUTPUT 

- Gll GllGllGl 

9160246 1 

Figure A-22. 
A-13 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

AU MICROPROGRAM 

I 
Figure A-23. 

I 

I I 
I 

L1 L1 L1 L1 ~ 

~~ 

REG I STERS 

ADDER 

INPUT CHANNEL 

cu 
92602-38 

/ 

Figure A-24. 

A-14 



> 

CU HAS A R I T H M E T I C  C A P A B I L I T Y  ALMOST 
, " , . . . . .  . . . "". S U F F I C I E N T  TO INCLUDE AU FUNCTIONS 

MU I 
I 

P 1  P 1  
P 1  P 1  
P 1  P 1  
P 1  P 1  

L DM 

I P 1 1  Pg4- 
L PM 

P 2  I P 2  I P 2  
LOCAL CLOCK 

I 
L O G I C  U N I T  1 

\ 92602-39 

Figure A-25. 

92602-40 
\ / 

Figure A-26. 

A-15 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

IMPROVED IMP 

TIME rrS % 

5.8 40 
6.1 62 
20.8 72 
6.3 66 
5.4 51 
21.8 82 
5.1 91 
1.2 + 3.0 n 
2.0 + 3.8 n 
6.713.0 166175 
7.4 a7 

: HUGHLS : REVISED 1/0 S I M P L I F I E S  AND SPEEDS UP SYSTEM 
&------------a ... ".*..,,.. I*. 
I I * .  AT NO COST INCREASE 

FIRST IMP MCB 

TIME@ % TIME 16 

12.2 84 14.5 
11.0 100 11.0 
20.2 70 29.0 
11.5 120 9.6 
15.1 141 10.5 
23.6 89 26.5 
6.4 116 5.5 
1.9 + 4.4 n 1.5 + 5.0 n 
1.9 + 4.1 n 4.s + 7.0 n 
7.2 180 4.0 

8.S 

I PREV I OUS 

CONTROL Fl A 
iN 

DEV ICES 

I ~ C R E M E N T  
ADDRESS. 

DECREMENT 
WORD COUNT. 

TEST FOR 
COMPLETION. 

n CURRENT 

INCREMENT DATA 
ADDR. FLOW 

DECREMENT 
COUNT. B I T S ;  

TEST FOR 
COMPLET I ON. 

DEVICES 

$5451-40 
L 

Figure A-27. 

HUGHES OPERATINQ SPEED COMPARISON W O W S  AN IMPROVEMENT 

"yL*I,. .<..n <- .... 
a.e"*D..*.E". S.SY. 

ALL SHIFTS 
ADDISUB 
MULTI 
LOGICAL FUNCTIONS 
FLOATING AOOISUB 
FLOATINQ MPY 
TTDILOAD DIRECT 
BLOCK TRA 
110 TRA 
CONOITIONAL BRANCH 
LOADPTO 

9260241 

/ 

Figure A-28. 

A-16 



r------------~ 

I.------------a 
I nuGnEs : FUTURE WORK REQUIRES S I G N I F I C A N T L Y  
.““..I .**“ 3 m**. 

1 *I. I NCREASED I NVEST I GAT ION OF C I RCU I T  SELEC- I T I O N ,  R E L I A B I L I T Y  & PACKAGING 

+ 

Figure A-29 

TEST 

RECONFIGURATION w 
* 

RS 

UPDATE 
USER 
MANUAL 

F A B R I C A T I O N  

EVALUATION 

d 

PS 

Figure A-30. 

A-17 



Appendix - Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

BY5I-44 
/ 

Figure A-31. 

FUTURE WORK SHOULD EXAMINE 

>I 00 GATES/CH I P 

AN D 

ION IMPLANTED MOS C I R C U I T S  

A-18 



F 
c_____--__---~ 

&------------a 
; HUGHES ; LARGER NUMBER OF GATES PER C H I P  HAVE . ..". ,. .*.." . . . ",.... -.. I MPROVED SYSTEM EFFECT I VENESS POTENT I AL 

ADVANTAGES 

1 .  GREATER GATES/PIN - HIGHER MTBF/GATE 

2 .  LOWER POWER D I S S I P A T I O N / G A T E  

3.  REDUCED NO. OF C H I P - T Y P E S  (FUNCTIONAL)  

4.  REDUCED LABOR & PACKS 

D I SADVANTAGES 

I .  HARDER TO PRODUCE (LOWER Y I E L D )  

2 .  INCREASED THERMAL CONCENTRATION 

3. COULD LEAD TO MANY C H I P  TYPES 
(NON-FUNCT I ONAL 

4.  COULD LEAD TO INCREASED L O G I C  DESIGN 
D I F F I C U L T Y  (NON-FUNCTIONAL) 

Figure A-33. 

r___________-_l 

.______------A 
; HUGHES : MANUFACTURERS PROJECTIONS FOR GATES/CHIP 

*..-"., . - .  ..-II. ARE BEING V E R I F I E D  

1000 

100 

NO. OF GATES 
100% Y I E L D  

0 

15451-15 

' 69 '70  ' 71  
AVAJLABLE ON MARKET 

Figure A-34. 

A-19 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 

\ 

r------------. 

:. SYSTEM R E L I A B I L I T Y  AT LOWER SYSTEM COST 

.$.5,.*7 

1 .  LOWER POWER D I S S I P A T I O N  

2. GREATER C I R C U I T  DENSITY 

3. IMPROVED OR EQUAL MTBF VS BIPOLAR 

4 .  R E L A T I V E L Y  LOWER SPEED 

I N  NANOSECONDS 

T Y P E  

P -  CHANNEL 

N-  CHANNEL 

COMPLEMENTARY 

CONVENT I ONAL I ON 
MOS IMPLANTED I 

87 16 

43  8 

13 3 

Figure A-36. 

A-20 



> 

r------------q 

&------------a ...... .."*I ..1_. 

I nuwm : MOS R E L I A B I L I T Y  DATA PROMISES GOOD MTBF ..................... ASSUM I NG BURN- I N 

1. 1 1 4 , 7 2 4 , 0 0 0  D E V I C E  HOURS WITH ZERO F A I L U R E S  

2. 480 U N I T S  OF MOS L S I  WITH 150 TO 4 1 2  TRANSIS-  

TORS HAVE ACCUMULATED 7 2 0 , 0 0 0  CIRCUIT-HOURS AT 

85OC WITH 9 F A I L U R E S  BEFORE 150 HOURS OF 

OPERAT I ON 

3 .  500,000 C I R C U I T  HOURS OPERATION RECORDED WITH 

5 F A I L U R E S  PRIOR TO 150 HOURS OF OPERATION 

81111-47 
/ 

Figure A-37 

r_-_______--_.l 

L____________,  
I HUGHES : ION IMPLANTED MOS HAS SIGNIFICANT ADVANTAGE:  

"*.". ..... "... ......... OVER CONVENTIONAL MOS REDUCED: 

I .  PROPAGATION DELAY DUE TO LOWER GATE 

2. PULSE FEED THRU 

3. l / f  N O I S E  

4. THRESHOLD POTENTIAL 

5. SPEED POWER PRODUCT 

CAPAC I TANCE 

Figure A-38. 

A-21 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

GIBSON 6.33/5.44 ps 
MIX 
INSTRUCTION 10.30* p 

HUOHEs SPEEO - W W E R  PRODUCT GRAPH 1LLUSTRATES PDVANTAQL OF CUSTOM OESlQNEO lMOS [P-CHANNEL) 
OVER LEADING TTL CIRCUITS -.. .,..... .. ".... 

O.~Y*~....l".a"OY. 

9.30 p 68/58 

iii* 

1 2 3 4 5 6 I) 10 20 30 b0 5060 80 100 

W W E R  DISSIPATION IN MWIGATE 

92602-49 

/ 

Figure A-39 

COMPARISON OF LOGIC IMPLEMENTATION 

FUNCTIONAL CHAR. 

TYPES I 10 I 11 

CARDS 

23,600 19,700 

GATES 47,200 47,200 

PERCENT - MCB REF 

IMPROVED 

267 320 

47,600 

35,000 

A-22 



HUGHES PROPOSED WORK FLOW scnOouLE 
",. ,.,..- *.... .. ",... .. e"""...*.". e**". 

9260242 

Figure A-41 

r____________ 

.------------a 
: HUGHES 1 T H I S  PROGRAM PROVIDES NASA W I T H  AN E F F E C T l V l  
.UL. "M*I r.lDME e.... ..,. c-". o.s. TOOL FOR DES I GN 1 NG D 1 G I TAL EQU I PMENTS 

0 PROGRESS DEMONSTRATED S U F F I C I E N C Y  

0 POTENTIAL E X I S T S  FOR S I G N I F I C A N T  
IMPROVEMENTS I N  SYSTEM R E L I A B I L I T Y  
AND EFFECTIVENESS (MOS & LARGER C H I P S )  

0 FUTURE WORK WILL PROVIDE THE REQUIRED 
INTEGRATED DESIGNLAPPROACH 

Figure A-42 

A-23 



Appendix -Research in the Effective Implementation of Guidance Computers with Large 
Scale Integration 

MOS HAS SUPERIOR PACKING DENSITY 
AN0 SPEED POWER PRODUCT 

Figure A 4 3  

A-24 


